• Title/Summary/Keyword: reduced-order modeling (ROM)

Search Result 7, Processing Time 0.024 seconds

NUMERICAL SOLUTIONS OF BURGERS EQUATION BY REDUCED-ORDER MODELING BASED ON PSEUDO-SPECTRAL COLLOCATION METHOD

  • SEO, JEONG-KWEON;SHIN, BYEONG-CHUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.123-135
    • /
    • 2015
  • In this paper, a reduced-order modeling(ROM) of Burgers equations is studied based on pseudo-spectral collocation method. A ROM basis is obtained by the proper orthogonal decomposition(POD). Crank-Nicolson scheme is applied in time discretization and the pseudo-spectral element collocation method is adopted to solve linearlized equation based on the Newton method in spatial discretization. We deliver POD-based algorithm and present some numerical experiments to show the efficiency of our proposed method.

Transonic Flutter Analysis Using Euler Equation and Reduced order Modeling Technique (오일러 방정식 및 저차모델링 기법을 활용한 천음속 플러터 해석)

  • Kim, Dong-Hyun;Kim,, Yo-Han;Kim, Myung-Hwan;Ryu, Gyeong-Joong;Hwang, Mi-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.339-344
    • /
    • 2011
  • In the past much effort has been made to utilize advanced computational fluid dynamic (CFD) programs for aeroelastic simulations and analysis. However, it is limited in the field of unsteady aeroelasticity due to enormous size of computer memory and unreasonably long CPU time. Recently, AAEMS(Aerodynamics is Aeroelasticity minus Structure) was developed for linear time-invariant, coupled fluid-structure systems. In this paper, to demonstrate further the efficiency and accuracy of the new model reduction method, we successfully examine AGARD 445.6 wing modeled by FLUENT CFD, FSIPRO3D and NASTRAN FEM(Finite Element Method) programs. Using the ROM(Reduced Order Modeling) one can predict flutter boundary as a function of the dynamic pressure.

  • PDF

Investigation on the nonintrusive multi-fidelity reduced-order modeling for PWR rod bundles

  • Kang, Huilun;Tian, Zhaofei;Chen, Guangliang;Li, Lei;Chu, Tianhui
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1825-1834
    • /
    • 2022
  • Performing high-fidelity computational fluid dynamics (HF-CFD) to predict the flow and heat transfer state of the coolant in the reactor core is expensive, especially in scenarios that require extensive parameter search, such as uncertainty analysis and design optimization. This work investigated the performance of utilizing a multi-fidelity reduced-order model (MF-ROM) in PWR rod bundles simulation. Firstly, basis vectors and basis vector coefficients of high-fidelity and low-fidelity CFD results are extracted separately by the proper orthogonal decomposition (POD) approach. Secondly, a surrogate model is trained to map the relationship between the extracted coefficients from different fidelity results. In the prediction stage, the coefficients of the low-fidelity data under the new operating conditions are extracted by using the obtained POD basis vectors. Then, the trained surrogate model uses the low-fidelity coefficients to regress the high-fidelity coefficients. The predicted high-fidelity data is reconstructed from the product of extracted basis vectors and the regression coefficients. The effectiveness of the MF-ROM is evaluated on a flow and heat transfer problem in PWR fuel rod bundles. Two data-driven algorithms, the Kriging and artificial neural network (ANN), are trained as surrogate models for the MF-ROM to reconstruct the complex flow and heat transfer field downstream of the mixing vanes. The results show good agreements between the data reconstructed with the trained MF-ROM and the high-fidelity CFD simulation result, while the former only requires to taken the computational burden of low-fidelity simulation. The results also show that the performance of the ANN model is slightly better than the Kriging model when using a high number of POD basis vectors for regression. Moreover, the result presented in this paper demonstrates the suitability of the proposed MF-ROM for high-fidelity fixed value initialization to accelerate complex simulation.

Application of POD reduced-order algorithm on data-driven modeling of rod bundle

  • Kang, Huilun;Tian, Zhaofei;Chen, Guangliang;Li, Lei;Wang, Tianyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.36-48
    • /
    • 2022
  • As a valid numerical method to obtain a high-resolution result of a flow field, computational fluid dynamics (CFD) have been widely used to study coolant flow and heat transfer characteristics in fuel rod bundles. However, the time-consuming, iterative calculation of Navier-Stokes equations makes CFD unsuitable for the scenarios that require efficient simulation such as sensitivity analysis and uncertainty quantification. To solve this problem, a reduced-order model (ROM) based on proper orthogonal decomposition (POD) and machine learning (ML) is proposed to simulate the flow field efficiently. Firstly, a validated CFD model to output the flow field data set of the rod bundle is established. Secondly, based on the POD method, the modes and corresponding coefficients of the flow field were extracted. Then, an deep feed-forward neural network, due to its efficiency in approximating arbitrary functions and its ability to handle high-dimensional and strong nonlinear problems, is selected to build a model that maps the non-linear relationship between the mode coefficients and the boundary conditions. A trained surrogate model for modes coefficients prediction is obtained after a certain number of training iterations. Finally, the flow field is reconstructed by combining the product of the POD basis and coefficients. Based on the test dataset, an evaluation of the ROM is carried out. The evaluation results show that the proposed POD-ROM accurately describe the flow status of the fluid field in rod bundles with high resolution in only a few milliseconds.

Propulsion System Modeling and Reduction for Conceptual Truss-Braced Wing Aircraft Design

  • Lee, Kyunghoon;Nam, Taewoo;Kang, Shinseong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.651-661
    • /
    • 2017
  • A truss-braced wing (TBW) aircraft has recently received increasing attention due to higher aerodynamic efficiency compared to conventional cantilever wing aircraft. For conceptual TBW aircraft design, we developed a propulsion-and-airframe integrated design environment by replacing a semi-empirical turbofan engine model with a thermodynamic cycle-based one built upon the numerical propulsion system simulation (NPSS). The constructed NPSS model benefitted TBW aircraft design study, as it could handle engine installation effects influencing engine fuel efficiency. The NPSS model also contributed to broadening TBW aircraft design space, for it provided turbofan engine design variables involving a technology factor reflecting progress in propulsion technology. To effectively consolidate the NPSS propulsion model with the TBW airframe model, we devised a rapid, approximate substitute of the NPSS model by reduced-order modeling (ROM) to resolve difficulties in model integration. In addition, we formed an artificial neural network (ANN) that associates engine component attributes evaluated by object-oriented weight analysis of turbine engine (WATE++) with engine design variables to determine engine weight and size, both of which bring together the propulsion and airframe system models. Through propulsion-andairframe design space exploration, we optimized TBW aircraft design for fuel saving and revealed that a simple engine model neglecting engine installation effects may overestimate TBW aircraft performance.

Constructing a digital twin for estimating the response and load of a piping system subjected to seismic and arbitrary loads

  • Dongchang Kim;Gungyu Kim;Shinyong Kwag;Seunghyun Eem
    • Smart Structures and Systems
    • /
    • v.31 no.3
    • /
    • pp.275-281
    • /
    • 2023
  • In recent years, technological developments have rapidly increased the number of complex structures and equipment in the industrial. Accordingly, the prognostics and health monitoring (PHM) technology has become significant. The safety assessment of industrial sites requires data obtained by installing a number of sensors in the structure. Therefore, digital twin technology, which forms the core of the Fourth Industrial Revolution, is attracting attention in the safety field. The research on digital twin technology of structures subjected to seismic loads has been conducted recently. Hence, this study proposes a digital twin system that estimates the responses and arbitrary load in real time by utilizing the minimum sensor to a pipe that receives a seismic and arbitrary load. To construct the digital twin system, a finite-element model was created considering the dynamic characteristics of the pipe system, and then updating the finite-element model. In addition, the calculation speed was improved using a finite-element model that applied the reduced-order modeling (ROM) technology to achieve real-time performance. The constructed digital twin system successfully and rapidly estimated the load and the point where the sensor was not attached. The accuracy of the constructed digital twin system was verified by comparing the response of the digital twin model with that derived by using the load estimated from the digital twin model as input in the finite-element model.

Identification of Aerodynamic Model CFD-Based for Gust Response Analysis

  • Nie, Xueyuan;Yang, Guowei
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.1
    • /
    • pp.43-46
    • /
    • 2015
  • Aeroelastic gust response analysis plays an important role in design of aircrafts. For gust response analysis, frequency domain aerodynamics method has been typically used with generalized aerodynamic influence coefficient matrices at various reduced frequencies. However, it cannot be applied to the aeroservoelastic analysis, such as gust alleviation control. Time-domain state space (SS) models must be built. It attacks little attention that gust response analysis relies on continuous gust time-domain input signal in terms of its PSD function. The aim the current study is to provide a reduced-order modeling (ROM) method based on CFD to model gust responses for continuous gust responses for continuou gust inputs in time domain. The paper analyzed the gust response of AGARD445.6 wing subjected to the Dryden gust with ROMs and compared the difference between the rigid structure and elastic one. The results demonstrate that structure elastic effect effect should be considered in the design of aircraft.