• Title/Summary/Keyword: reduced scale model

Search Result 478, Processing Time 0.025 seconds

A kind of NiTi-wire shape memory alloy damper to simultaneously damp tension, compression and torsion

  • Han, Yu-Lin;Yin, Hai-Yang;Xiao, Er-Tian;Sun, Zhi-Lin;Li, Ai-Qun
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.241-262
    • /
    • 2006
  • NiTi-wire shape memory alloy (SMA) dampers, that utilize NiTi SMA wires to simultaneously damp tension, compression and torsion, was developed for structural control implementation in this study. First, eight reduced-scale NiTi-wire SMA dampers were constructed. Then tension, compression and torsion experiments using the eight reduced-scale NiTi-wire SMA dampers of different specification were done. The experimental results revealed all of the eight reduced-scale NiTi-wire SMA dampers had the ability to simultaneously supply tension-compression damping and torsion damping. Finally, mechanics analysis of the NiTi-wire SMA dampers was done based on a model of the SMA-wire restoring force and on tension-compression and torsion damping analysis. The damping analytical results were found to be similar to the damping experimental results.

A Simulator for Potential Distribution Analysis

  • Kil, Gyung-Suk;Gil, Hyong-Jun;Park, Dae-Won
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.225-229
    • /
    • 2012
  • This paper proposes a reduced-scale simulator that can replace numerical analytic methods for the estimation of potential distribution caused by ground faults in various grounding systems. The simulator consists of a hemispherical electrolytic tank, a three-dimensional potential probe, a grounding electrode, and a data acquisition module. The potential distribution is measured using a potentiometer with a position-tracing function when a test current flows to the grounding electrode. Using the simulator, we could clearly analyze the potential distribution for a reduced- scale model by one-eightieth of the buried depth and length of the grounding rod and grounding grid. Once both the shape of the grounding electrode and the fault current are known, the actual potential distribution can be estimated.

Development of devices and methods for simulation of hurricane winds in a full-scale testing facility

  • Huang, Peng;Chowdhury, Arindam Gan;Bitsuamlak, Girma;Liu, Roy
    • Wind and Structures
    • /
    • v.12 no.2
    • /
    • pp.151-177
    • /
    • 2009
  • The International Hurricane Research Center (IHRC) at Florida International University (FIU) is pursuing research to better understand hurricane-induced effects on residential buildings and other structures through full-scale aerodynamic and destructive testing. The full-scale 6-fan Wall of Wind (WoW) testing apparatus, measuring 4.9 m tall by 7.3 m wide, is capable of generating hurricane-force winds. To achieve windstorm simulation capabilities it is necessary to reproduce mean and turbulence characteristics of hurricane wind flows. Without devices and methods developed to achieve target wind flows, the full-scale WoW simulations were found to be unsatisfactory. To develop such devices and methods efficiently, a small-scale (1:8) model of the WoW was built, for which simulation devices were easier and faster to install and change, and running costs were greatly reduced. The application of such devices, and the use of quasiperiodic fluctuating waveforms to run the WoW fan engines, were found to greatly influence and improve the turbulence characteristics of the 1:8 scale WoW flow. Reasonable reproductions of wind flows with specified characteristics were then achieved by applying to the full-scale WoW the devices and methods found to be effective for the 1:8 scale WoW model.

Design of Large Cone Calorimeter for the Fire Study (화재연구를 위한 대형 콘 칼로리미터의 설계)

  • Lee, Eui-Ju
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.65-71
    • /
    • 2006
  • Some major properties such as a heat release rate have been measured experimentally for the validation of fire model and the clarification of fire phenomena as the study is more rigorous recently. Although the reduced-scale experiment also provides the basic data and the physical understanding in fire study, it is not enough to explain real fire problem directly because there is no exact analogy theory between a real fire and the reduced scale model. Therefore, large cone calorimeter have been built and used in a few foreign countries for the measurement of large scale fire. This paper addressed the theoretical background and the description of key features in the design of the facility. It will be a useful guide for implementation of the large scale cone calorimeter in the future.

The Study of Development and Calibration for the Real Scale Fire Test Facility (실대형화재평가장치의 개발 및 안정화에 관한 연구)

  • Yoo, Yong-Ho;Kim, Heung-Youl;Shin, Hyun-Jun
    • Fire Science and Engineering
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 2008
  • The reduced scale fire test provides basic data but it is not enough to analysis real fire problem directly because there is no exact analogy theory between a real fire and the reduced scale model. Therefore, we have developed the 10 MW large scale calorimeter in order to real scale fire test. This advanced large scale calorimeter used for physical properties such as a heat release rate, based upon consumption of $O_2$ method. Using the heptane pool fire, we carried out the calibration in order to evaluation for heat release rate. It is approve that this facility has the reliability and it is capable of applying to the advance fire research in the future.

SHM benchmark for high-rise structures: a reduced-order finite element model and field measurement data

  • Ni, Y.Q.;Xia, Y.;Lin, W.;Chen, W.H.;Ko, J.M.
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.411-426
    • /
    • 2012
  • The Canton Tower (formerly named Guangzhou New TV Tower) of 610 m high has been instrumented with a long-term structural health monitoring (SHM) system consisting of over 700 sensors of sixteen types. Under the auspices of the Asian-Pacific Network of Centers for Research in Smart Structures Technology (ANCRiSST), an SHM benchmark problem for high-rise structures has been developed by taking the instrumented Canton Tower as a host structure. This benchmark problem aims to provide an international platform for direct comparison of various SHM-related methodologies and algorithms with the use of real-world monitoring data from a large-scale structure, and to narrow the gap that currently exists between the research and the practice of SHM. This paper first briefs the SHM system deployed on the Canton Tower, and the development of an elaborate three-dimensional (3D) full-scale finite element model (FEM) and the validation of the model using the measured modal data of the structure. In succession comes the formulation of an equivalent reduced-order FEM which is developed specifically for the benchmark study. The reduced-order FEM, which comprises 37 beam elements and a total of 185 degrees-of-freedom (DOFs), has been elaborately tuned to coincide well with the full-scale FEM in terms of both modal frequencies and mode shapes. The field measurement data (including those obtained from 20 accelerometers, one anemometer and one temperature sensor) from the Canton Tower, which are available for the benchmark study, are subsequently presented together with a description of the sensor deployment locations and the sensor specifications.

Pull-out Capacity of Screw Anchor Pile in Sand Using Reduced-Scale Model Tests (축소모형실험을 이용한 사질토 지반에 근입된 Screw Anchor Pile의 인발저항특성)

  • Kim, Dae-Hyun;Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.121-133
    • /
    • 2013
  • This paper presents the results of an investigation into the pull-out capacity characteristics of screw anchor piles. Theoretical background of screw anchor pile (SAP) was first discussed. A series of reduced-scale model tests were performed on a number of cases with different SAP geometries such as pitch and diameter of screw as well as relative density of the model ground. The applicability of the pull-out capacity prediction equations were also examined based on the test results. It was shown that the pitch of screw has negligible effect on the pull-out capacity, while the diameter of screw has relatively large effect on pull-out capacity under a given condition. Practical implications of the findings from this study are discussed in great detail.

Effect of Screw Geometries on Pull-out Characteristics of Screw Anchor Piles Using Reduced Scale Model Tests (스크류 제원이 스크류 앵커 파일의 인발저항 특성에 미치는 영향에 관한 축소모형실험)

  • Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.1
    • /
    • pp.5-15
    • /
    • 2012
  • This paper presents the results of an investigation into the pull-out characteristics of screw anchor piles for use in braced excavation and cut-slope. A series of reduced-scale model tests were performed on model screw anchor piles with different geometric characteristics such as screw size and pitch length. The results indicated that the pullout resistance increases with decreasing the pitch length for a given screw size. It was also observed that the pullout capacity of a screw anchor pile increases with the screw size up to a certain size beyond which the increase becomes minimal. The results are presented in such a way that the pullout characteristics of screw piles with different screw geometric characteristics can be identified. Practical implications of the findings are discussed.

Reduced-Scale Model Tests on the Effect of Preloading on Residual Deformation of Reinforced Earth Structures (선행하중이 보강토 구조물의 잔류변형에 미치는 영향에 관한 축소모형실험)

  • Yoo, Chung-Sik;Kim, Sun-Bin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.6
    • /
    • pp.101-116
    • /
    • 2008
  • The use of reinforced earth walls id permanent structures is getting its popularity. Despite a number of advantages of reinforced earth walls over conventional concrete retaining walls, there exists concerns over long-term residual deformations when subjected to repeated and/or cyclic loads, during their service period. In this investigation, the effects of pre-loading in reducing long term residual deformation of reinforced soil structures under sustained and/or repeated loading environment are investigated using a series of reduced-scale model tests. A model pier and a back-to-back (BTB) reinforced soil structures were constructed and tested under various loading and backfilling conditions. The results indicate that the pre-loading technique can be an effective means of controlling residual deformations of reinforced soils under various loading conditions.

Software Effort Estimation in Rapidly Changing Computng Environment

  • Eung S. Jun;Lee, Jae K.
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.133-141
    • /
    • 2001
  • Since the computing environment changes very rapidly, the estimation of software effort is very difficult because it is not easy to collect a sufficient number of relevant cases from the historical data. If we pinpoint the cases, the number of cases becomes too small. However is we adopt too many cases, the relevance declines. So in this paper we attempt to balance the number of cases and relevance. Since many researches on software effort estimation showed that the neural network models perform at least as well as the other approaches, so we selected the neural network model as the basic estimator. We propose a search method that finds the right level of relevant cases for the neural network model. For the selected case set. eliminating the qualitative input factors with the same values can reduce the scale of the neural network model. Since there exists a multitude of combinations of case sets, we need to search for the optimal reduced neural network model and corresponding case, set. To find the quasi-optimal model from the hierarchy of reduced neural network models, we adopted the beam search technique and devised the Case-Set Selection Algorithm. This algorithm can be adopted in the case-adaptive software effort estimation systems.

  • PDF