• Title/Summary/Keyword: reduced glutathione

Search Result 730, Processing Time 0.026 seconds

Glutathione and Glutathione-Related Enzymes during Dictyostelium Development

  • Kim, Beom-Jun;Park, Chang-hoon;Kang, Sa-Ouk
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2002.06b
    • /
    • pp.48-48
    • /
    • 2002
  • Glutathione (GSH) is most prevalent reducing thiols in eukaryotic cells and known that participates in many cellular processes. It was found that total amount of glutathione and the ratio of reduced to oxidized glutathione during development of Dictyostelium discoideum increase at the initial stage of the aggregation of amoeba.(omitted)

  • PDF

Studies on the Concentrations of K, Na and Reduced Glutathione in Red Blood Cells of Jindo Dogs (진도견의 적혈구내 K, Na 및 reduced glutathione 함량에 관한 조사)

  • ;;;;;;;Osamu Yamato;Yoshimitsu Maede
    • Journal of Veterinary Clinics
    • /
    • v.16 no.2
    • /
    • pp.272-275
    • /
    • 1999
  • Generally, it is known that the composition of the cation of the dog's RBCs is high in potassium(K) and low in sodium(Na). However, it is reported that certain kinds of dogs have HK, HG phenotype which contains a large amount of reduced glutathione(GSH) by the effect of Na-K pump on the cell membrane of RBC with high concentration of K and low concentration of Na. Although this HK phenotype is not regarded as a disease, it is supposed to be an important assignment to examine the distribution and the occurrence rate of the dogs that contain HK cell in their RBCs for the proper clinical treatments as these HK dogs are very sensitive to aromatic disul-fide or onions and have a tendency to cause hemolysis. Accordingly, present study was performed to measure the concentration of K, Na and GSH in the RBCs of Jindo dogs and that of Dosa dogs at the same time.

  • PDF

Studies on the Concurrent Administration of Medicines(VII) (의약품의 병용투여에 관한 연구 (VII))

  • 변순희;김일혁
    • YAKHAK HOEJI
    • /
    • v.31 no.3
    • /
    • pp.133-139
    • /
    • 1987
  • These studies were attempted to investigate the preventive effect of Ganoderma lucidum extract administered concurrently with glutathione on the liver damage induced by carbon tetrachloride ($CCl_4$) in rats. S-GOT and S-GPT activities of all the pre-treatment groups were significantly decreased, as compared with those of the control intoxicated by $CCl_4$. The concurrent administrations of Ganoderma lucidum extract with glutathione (100+100mg/kg, 200+100mg/kg, and 400+100mg/kg, respectively) were more effective than the individual administrations. i.e., Ganaderma lucidtcm extract (100, 200 and 400mg/kg, respectively) and glutathione (100, 200 and 400mg/kg, respectively). On the determination of lipid-peroxidation in liver, the concurrent administrations of Ganoderma lucidum extract with glutathione (100+100mg/kg, and 200+100mg/kg, respectively) significantly reduced the liver TBA values. Although hepatic cellular necrosis and fatty acid deposit were remarkably increased by $CCl_4$ intoxication, the concurrent administration of Ganoderma lucidum extract with glutathione (200+100mg/kg) reduced the pathological changes of parenchymal cell necrosis and fatty changes around centrilobalar area of the control. These findings indicate that the concurrent administrations of Ganoderma lucidum extract with glutathione showed better improvements than the individual administrations of them in all pathological aspects, in particular, against hepatitis and hepatic necrosis due to the cellular necrosis and fatty infiltration.

  • PDF

Hepatoprotective Effect of G009 on CCl4-induced Hepatotoxicity in Primary Cultured Rat Hepatocytes (사염화탄소로 독성을 유발시킨 일차배양 간세포에 미치는 G009의 효과)

  • Lee, Mi-Kyeong;Kim, Hong-Pyo;Lee, June-Woo;Jeong, Hoon;Lee, Seung-Yong;Kim, Young-Choong
    • YAKHAK HOEJI
    • /
    • v.42 no.1
    • /
    • pp.108-113
    • /
    • 1998
  • G009, a polysaccharide isolated from the mycelia of Ganoderma lucidum IYO09, showed a hepatoprotective activity against $CCl_4$ induced cytotoxicity in primary cu ltured rat hepatocytes. Incubation of $CCl_4$-intoxicated hepatocytes with G009 significantly reduced the levels of glutamic pyruvic transaminase and sorbitol dehydrogenase released from hepatocytes in the medium. G009 showed antioxidative effect by elevating the activities of glutathione reductase and superoxide dismutase, and the content of glutathione in $CCl_4$-intoxidcated primary cultured rat hepatocytes. Furthermore, G009 significantly elevated glutathione-S-transferase activity in $CCl_4$-intoxicated primary cultured rat hepatocytes. G009 also reduced the production of malondialdehyde, a byproduct of lipid peroxidation. From these results, it could be concluded that G009 exerted hepatoprotective activity against $CCl_4$-induced cytotoxicity through antioxidation.

  • PDF

Prognostic Significance of Altered Blood and Tissue Glutathione Levels in Head and Neck Squamous Cell Carcinoma Cases

  • Khan, Sami Ullah;Mahjabeen, Ishrat;Malik, Faraz Arshad;Kayani, Mahmood Akhtar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7603-7609
    • /
    • 2014
  • Glutathione is a thiol compound that plays an important role in the antioxidant defense system of the cell and its deficiency leads to an increased susceptibility to oxidative stress and, thus, progression of many disease states including head and neck cancer. In the present study, alterations of glutathione levels were investigated in study cohort of 500 samples (cohort 1 containing 200 head and neck cancer blood samples along with 200 healthy controls and cohort II with 50 head and neck squamous cell carcinoma tissue samples along with 50 control tissues) by high performance liquid chromatography. The results indicated that mean blood glutathione levels were significantly reduced in head and neck cancer patients (p<0.001) compared to respective controls. In contrast, the levels of glutathione total (p<0.05) and glutathione reduced (p<0.05) were significantly elevated in head and neck squamous cell carcinoma tissues compared to the adjacent cancer-free control tissues. In addition to this, pearson correlation performed to correlate different tissue glutathione levels (GSH) with clinical/pathological parameters demonstrated a significant negative correlation between pT-stage and GSH level ($r=-0.263^{**}$; p<0.01), C-stage and GSH level ($r=-0.335^{**}$; p<0.01), grade and GSH ($r=-0.329^{**}$; p<0.01) and grade versus redox index ($r=-0.213^{**}$; p<0.01) in HNSCC tissues. Our study suggests that dysregulation of glutathione levels in head and neck cancer has the potential to predict metastasis, and may serve as a prognostic marker.

Role of Glutathione Redox System on the T-2 Toxin Tolerance of Pheasant (Phasianus colchicus)

  • Fernye, Csaba;Ancsin, Zsolt;Bocsai, Andrea;Balogh, Krisztian;Mezes, Miklos;Erdelyi, Marta
    • Toxicological Research
    • /
    • v.34 no.3
    • /
    • pp.249-257
    • /
    • 2018
  • The purpose of the present study was to evaluate the effects of different dietary concentrations of T-2 toxin on blood plasma protein content, lipid peroxidation and glutathione redox system of pheasant (Phasianus colchicus). A total of 320 one-day-old female pheasants were randomly assigned to four treatment groups fed with a diet contaminated with different concentrations of T-2 toxin (control, 4 mg/kg, 8 mg/kg and 16 mg/kg). Birds were sacrificed at early (12, 24 and 72 hr) and late (1, 2 and 3 weeks) stages of the experiment to demonstrate the effect of T-2 toxin on lipid peroxidation and glutathione redox status in different tissues. Feed refusal and impaired growth were observed with dose dependent manner. Lipid-peroxidation was not induced in the liver, while the glutathione redox system was activated partly in the liver, but primarily in the blood plasma. Glutathione peroxidase activity has changed parallel with reduced glutathione concentration in all tissues. Based on our results, pheasants seem to have higher tolerance to T-2 toxin than other avian species, and glutathione redox system might contribute in some extent to this higher tolerance, in particular against free-radical mediated oxidative damage of tissues, such as liver.

Mechanically Immobilized Copper Hexacyanoferrate Modified Electrode for Electrocatalysis Amperometric Determination of Glutathione

  • D. Davi Shankaran;S. Sriman Narayanan
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.816-820
    • /
    • 2001
  • A new copper hexacyanoferrate modified electrode was constructed by mechanical immobilization. The modified electrode was characterised by cyclic voltammetric experiments. Electrocatalytic oxidation of glutathione was effective at the modified electrode at a significantly reduced overpotential and at broader pH range. The modified electrode shows a stable and linear response in the concentration range of 9 ${\times}$10-5 to 9.9 ${\times}$10-4M with a correlation coefficient of 0.9995. The modified electrode exhibits excellent stability, reproducibility and rapid response and can be used in flow injection analysis for the determination of glutathione.

Studies on the Causal Component of Rusty-Root on Panax ginseng I. Antioxidative Activity Oriented (적변인삼 유발 물질 구명 I. 항산화 활성을 중심으로)

  • 이성식;이명구;최광태;안영옥;권석윤;이행순;곽상수
    • Journal of Ginseng Research
    • /
    • v.24 no.3
    • /
    • pp.113-117
    • /
    • 2000
  • To analyze the correlation between the rusty root and the antiokidative activity in ginseng (Panax ginseng C.A.Meyer) roots, the levels of antioxidative activity in various tissues of healthy and rusty roots. The superoxide dismutase activity in rusty roots (126.9 units/mg protein) was approximately 3.5 times higher than that in healthy roots. The catalase activity in rusty roots was approximately 1.6 times higher than that in healthy roots, whereas the peroxidase activity showed a slight low level in msty roots. The 1.1 diphenyl-2-picryl-hydrazyl(DPPH) free radical scavenging activity in rusty roots was approximately 2.0 times higher than that in healthy roots. The total ascorbate content in healthy roots was 166~240 $\mu\textrm{g}$/g fr. wt. depending on the tissues. Interestingly, the oxidized dehydroascorbate (DHA) content occupied more than 80% in total ascorbate content. The total ascorbate content in rusty roots was a similar level with healthy roots, but the reduced ascorbate content was 3.5~7.5 times higher than that of the healthy roots. The total glutathione content of the epidermis, cortex and stele tissues in 겨sty roots was 7.3, 4.8, 1.2 times higher than the healthy tissues, respectively. The ratio of reduced glutathione (GSH) and oxidized glutathione (GSSG) showed a similar fluctuation of total glutathione content in 겨sty roots. These results indicate that the high antioxidative activity in rusty roots may involve in overcoming the oxidative stress derived from environmental stresses.

  • PDF

Dietary Tea Catechin Inclusion Changes Plasma Biochemical Parameters, Hormone Concentrations and Glutathione Redox Status in Goats

  • Zhong, Rongzhen;Xiao, Wenjun;Ren, Guopu;Zhou, Daowei;Tan, Chuanyan;Tan, Zhiliang;Han, Xuefeng;Tang, Shaoxun;Zhou, Chuanshe;Wang, Min
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.12
    • /
    • pp.1681-1689
    • /
    • 2011
  • The beneficial effects of tea catechins (TCs) are related not only to their antioxidant potential but also to the improvement of animal meat quality. In this study, we assessed the effects of dietary TC supplementation on plasma biochemical parameters, hormone responses, and glutathione redox status in goats. Forty Liuyang goats were randomly divided into four equal groups (10 animals/group) that were assigned to four experimental diets with TC supplementation at 4 levels (0, 2,000, 3,000 or 4,000 mg TC/kg DM feed). After a 60-day feeding trial, all goats were slaughtered and sampled. Dietary TC treatment had no significant effect on blood biochemical parameters, however, low-density lipoprotein cholesterol (p<0.001), triglyceride (p<0.01), plasma urea nitrogen (p<0.01), and glucose (p<0.001) decreased and total protein (p<0.01) and albumin (p<0.05) increased with the feeding time extension, and day 20 was the turning point for most of changes. Interactions were found in glutathione (p<0.001) and the ratio of reduced and oxidized glutathione (p<0.05) in whole blood between treatment and feeding time. Oxidized glutathione in blood was reduced (p<0.05) by 2,000 mg TC/kg feed supplementation, and a similar result was observed in longissimus dorsi muscle. Though plasma glutathione peroxidase (p<0.01) and glutathione reductase (p<0.05) activities were affected by treatment and feeding time interactions, and glutathione S-transferases activity increased with feeding day extension, no changed values appeared in longissimus dorsi muscle. In conclusion, dietary TC supplementation affected the concentrations of some blood metabolites and accelerated GSH depletion in the blood of goats. In terms of less high-density lipoprotein cholesterol, the highest insulin and IGF-I concentrations, the highest ratio of reduced and oxidized glutathione in plasma, the dosage of 2,000 mg TC/kg feed might be desirable for growing goats to prevent glutathione depletion and keep normal physiological metabolism.

Effect of Teminalia chebula Extract on Liver in Rat (가자(Terminalia chebula) 추출물이 흰쥐의 간장 활성에 미치는 영향)

  • 박종옥;이인섭;최종원
    • Journal of Life Science
    • /
    • v.14 no.1
    • /
    • pp.141-147
    • /
    • 2004
  • In this study, we investigated the effect of Teminalia Chebula (TC) water extract on liver in Rat. Treatment of TC water extract was orally administered 200, 300 mg/kg daily for one week and two weeks. The clinical parameters of serum, values of AST, ALT showed significantly higher than in normal group. Xanthine oxidase and aldehyde oxidase activities were significantly increased comparison with normal group. Microsomal enzymes, aminopyrine N-demethylase and aniline hydroxylase were not affected. Water extract of TC also increased hepatic rnalondialdehyde formation and reduced glutathione content. We also found that water extract of TC decreased activities of glutathione S-transferase and glutathione reductase but was not affected activities of $\gamma$-glutamylcysteine synthetase Thus, it seems that the water extract of TC induced decrease of oxygen free radical scavenger, glutathione content by inhibition of glutathione reductase which may reform oxidized glutathione to reduced glutathione.