• Title/Summary/Keyword: reduced controller

Search Result 708, Processing Time 0.022 seconds

Model Reduction Method and Optimized Smith Predictor Controller Design using Reduced Model (축소모델을 이용한 최적화된 Smith Predictor 제어기 설계)

  • 최정내;조준호;이원혁;황형수
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.11
    • /
    • pp.619-625
    • /
    • 2003
  • We proposed an optimum PID controller design method of the Smith Predictor It can be applied to various processes. The real process is approximated via the second order plus time delay model (SOPTD) whose parameters are specified through a model reduction algorithm. We already proposed a new model reduction method that considered four point in the Nyquist curve to reduced the steady state error between the real process model and the reduced model using the gradient decent method and the genetic algorithms. In addition, the Smith predictor is used to compensate time delay of the real process model. In this paper, the new optimum parameter tuning algorithm for PID controller of the Smith Predictor is proposed through ITAE as performance index. The Simulation results show the validity and improvement of performance for various processes.

Design of Optimal Controller for the Congestion in ATM Networks (ATM망의 체증을 해결하기 위한 최적 제어기 설계)

  • Jung Woo-Chae;Kim Young-Joong;Lim Myo-Taeg
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.6
    • /
    • pp.359-365
    • /
    • 2005
  • This paper presents an reduced-order near-optimal controller for the congestion control of Available Bit Rate (ABR) service in Asynchronous Transfer Mode (ATM) networks. We introduce the model, of a class of ABR traffic, that can be controlled using a Explicit Rate feedback for congestion control in ATM networks. Since there are great computational complexities in the class of optimal control problem for the ABR model, the near-optimal controller via reduced-order technique is applied to this model. It is implemented by the help of weakly coupling and singular perturbation theory, and we use bilinear transformation because of its computational convenience. Since the bilinear transformation can convert discrete Riccati equation into continuous Riccati equation, the design problems of optimal congestion control can be reduced. Using weakly coupling and singular perturbation theory, the computation time of Riccati equations can be saved, moreover the real-time congestion control for ATM networks can be possible.

Reduced order controller using J-lossless coprime factorization and balanced transformation (J-lossless 소인수분해와 균형화된 변환을 이용한 제어기 차수줄임)

  • 오도창;정은태;엄태호;박홍배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.1018-1023
    • /
    • 1992
  • In this paper we proposed the systematic method of reducing the order of controller with robustness. State space formulae for all controllers is found by solving two coupled J-lossless coprime factorizations and model reduction problem. To reduce the order of controller, balanced truncation and Hankel approximation are used.

  • PDF

A Model Reduction and PID Controller Design Via Frequency Transfer Function Synthesis (주파수 전달함수 합성법에 의한 모델축소 및 PID 제어기 설계)

  • Kim, Ju-Sik;Kwang, Myung-Shin;Kim, Jong-Gun;Jeon, Byeong-Seok;Jeong, Su-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.1
    • /
    • pp.34-40
    • /
    • 2005
  • This paper presents a frequency transfer function synthesis for simplifying a high-order model with time delay to a low-order model. A model reduction is based on minimizing the error function weighted by the numerator polynomial of reduced systems. The proposed method provides better low frequency fit and a computer aided algorithm. And in this paper, we present a design method of PID controller for achieving the desired specifications via the reduced model. The proposed method identifies the parameter vector of PID controller from a linear system that develops from rearranging the two dimensional input matrices and output vectors obtained from the frequency bounds.

The User's Cognitive Characteristics and Design of VCRs Remote Controller (VCRs 원격제어기의 인지적 특성 및 설계)

  • Gwak, Hyo-Yeon;Lee, Sang-Do
    • Journal of the Ergonomics Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.73-86
    • /
    • 1999
  • Nowadays, VCR(Video Cassette Recorder) has various functions, but users use to fail operating these function because of the complexity of operation. The process of operating VCR contains user's cognitive characteristics. It is necessary for designing it that we must identify a user's mental process in the behind of operational behaviors. This effort, as well as considering physical dimensions and layout, can make VCR easy to use. In this research, VCR remote controller are analyzed by the cognitive method and experiments. Three types of VCR remote controllers, cognitive VCR models and two non-cognitive(typical) VCR models, are adopted as experimental objects to test the validation of the suggested user's cognitive mode of VCR. As results, when VCR was operated by the cognitive prototype of remote controller, task completion time was reduced to 80.5%, and the number of errors was reduced to 96.8%.

  • PDF

Robust Deterministic Control of Singularly Perturbed Uncertain Systems (특이섭동 불확실시스템의 견실확정제어)

  • 강철구
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1542-1550
    • /
    • 1994
  • For a class of singularly perturbed uncertain system, an output feedback control law is designed. The controller structure is designed based on the uncertain reduced-order system, and the controller parameters are determined by information on the reduced-order and full-order systems. It has been shown that the reduces-order system with the designed controller possesses a stability property(specifically, a global uniform attractivity). Furthermore, the stability property of this control scheme is robust with respect to singular perturbation ; i.e., the full-order system, subject to the same controller, possesses the global uniform attractivity, provided the singular perturbation parameter $\mu<\mu^{*}$, where a threshold value $\mu^{*}$ can be computed from the information available on the full-order system.

Smith-Predictor Controller Design Using New Reduction Model (새로운 축소 모델을 이용한 Smith-Predictor 제어기 설계)

  • Choi Jeoung-Nae;Cho Joon-Ho;Hwang Hyung-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.1
    • /
    • pp.9-15
    • /
    • 2003
  • To improve the performance of PID controller of high order systems by model reduction, we proposed two model reduction methods. One, Original model with two point $({\angle}G(jw)=\;-{\pi}/2,\;-{\pi})$ in Nyquist curve used gradient base method and genetic algorithm. The other, Original model without two point$({\angle}G(jw)=\;-{\pi}/2,\;-{\pi})$in Nyquist curve used to add very small dead time. This method has annexed very small dead time on the base model for reduction, and we remove it after getting the reduced model, and , we improved Smith-predictor for a dead-time compensator using genetic algorithms. This method considered four points$({\angle}G(jw)=0,\;-\pi/2,\;-\pi,\;-3\pi/2)$ in the Nyquist curve to reduce steady state error between original and reduced model. It is shown that the proposed methods have more performance than the conventional method.

Simplifying method for the design of decentralized reduced order $H_{\infty}$ controllers (분산 저차 구조의 $H_{\infty}$ 제어기 설계를 위한 시스템의 간략화 방법)

  • Jo, Cheol-H.;Seo, Jin-H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.933-935
    • /
    • 1996
  • The simplifying method for the design of decentralized reduced order $H_{\infty}$ controller is considered in this paper. When the controller is reconstructed for the original system, the decentralized condition of the controller for the transformed system is generally destroyed with older simplifying method. In designing the decentralized controller, direct output feedthrough terms give some difficulties by using other station's input information. We proposed a new solution for this problem.

  • PDF

Active Vibration Control of Clamped Beams Using Filtered Velocity Feedback Controllers (Filtered Velocity Feedback 제어기를 이용한 양단지지보의 능동진동제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.5
    • /
    • pp.447-454
    • /
    • 2011
  • This paper reports a filtered velocity feedback(FVF) controller, which is an alternative to direct velocity feedback(DVFB) controller. The instability problems due to high frequency response under DVFB can be alleviated by the suggested FVF controller. The FVF controller is designed to filter out the unstable high frequency response. The FVF controller and the dynamics of clamped beams under forces and moments are first formulated. The effects of the design parameters(cut-off frequency, gain, and damping ratio) on the stability and the performance are then investigated. The cut-off frequency should be selected not to affect the system stability. The magnitude of the open loop transfer function(OLTF) at the cut-off frequency should be small. As increasing the gain of the FVF controller, the magnitude of the OLTF is increased, so that the closed loop response can be reduced more. The enhancement of the OLTF at the cut-off frequency is reduced but the phase behavior around the cut-off frequency is distorted, as the damping ratio is increased. The control performance is finally estimated for the clamped beam. More than 10 dB reductions in velocity response can be achieved at the modal frequencies from the first to eighth modes.

Active Vibration Control of Clamped Beams using Filtered Velocity Feedback Controllers (Filtered Velocity Feedback 제어기를 이용한 양단지지보의 능동진동제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.264-270
    • /
    • 2011
  • This paper reports a filtered velocity feedback (FVF) controller, which is an alternative to direct velocity feedback (DVFB) controller. The instability problems due to high frequency response under DVFB can be alleviated by the suggested FVF controller. The FVF controller is designed to filter out the unstable high frequency response. The FVF controller and the dynamics of clamped beams under forces and moments are first formulated The effects of the design parameters (cut-off frequency, gain, and damping ratio) on the stability and the performance are then investigated. The cut-off frequency should be selected not to affect the system stability. The magnitude of the open loop transfer function (OLTF) at the cut-off frequency should be small. As increasing the gain of the FVF controller, the magnitude of the OLTF is increased, so that the closed loop response can be reduced more. The enhancement of the OLTF at the cut-off frequency is reduced but the phase behavior around the cut-off frequency is distorted, as the damping ratio is increased The control performance is finally estimated for the clamped beam. More than 10dB reductions in velocity response can be achieved at the modal frequencies from the first to eighth modes.

  • PDF