• Title/Summary/Keyword: redox changes

Search Result 102, Processing Time 0.027 seconds

Effect of Repetitive Redox Transitions to Soil Bacterial Community and its Potential Impact on the Cycles of Iron and Arsenic (비소오염토양에서 반복적인 Redox 환경 변화가 토양 미생물 군집과 비소 및 철의 순환에 미치는 영향)

  • Park, Sujin;Kim, Sanghyun;Chung, Hyeonyong;Chang, Sun Woo;Moon, Heesun;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.1
    • /
    • pp.25-36
    • /
    • 2020
  • In a redox transition zone, geochemical reactions are facilitated by active bacteria that mediate reactions involving electrons, and arsenic (As) and iron (Fe) cycles are the major electron transfer reactions occurring at such a site. In this study, the effect of repetitive redox changes on soil bacterial community in As-contaminated soil was investigated. The results revealed that bacterial community changed actively in response to redox changes, and bacterial diversity gradually decreased as the cycle repeated. Proportion of strict aerobes and anaerobes decreased, while microaerophilic species such as Azospirillum oryzae group became the predominant species, accounting for 72.7% of the total counts after four weeks of incubation. Bacterial species capable of reducing Fe or As (e.g., Clostridium, Desulfitobacterium) belonging to diverse phylogenetic groups were detected. Indices representing richness (i.e., Chao 1) and phylogenetic diversity decreased from 1,868 and 1,926 to 848 and 1,121, respectively. Principle component analysis suggests that repetitive redox fluctuation, rather than oxic or anoxic status itself, is an important factor in determining the change of soil bacterial community, which in turn affects the cycling of As and Fe in redox transition zones.

Critical Review of Redox Processes in Aquifers Contaminated with Landfill Leachate (매립지 침출수에 의해 오염된 대수층 내에서의 산화-환원 과정에 대한 고찰)

  • Kang, Kihoon;Park, Heekyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.385-399
    • /
    • 2000
  • Groundwater contamination caused by landfill leachate leads to various changes in aquifer environment according to the characteristics of incoming contaminants and aquifer geochemistry. These changes in aquifer environment are known to contribute to the natural attenuation phenomena of contaminants. The knowledge on changes in aquifer environment is necessary to determine the extent of groundwater pollution, to assess risk of the pollution, and to develop an appropriate remediation technologies. In this paper, the changes in aquifer environment caused by landfill leachate development of various redox zones-and the natural attenuation phenomena occurred in each redox zone are reviewed. From this review, an appropriate research direction and control action is presented for the groundwater pollutions caused by unsanitary landfills scattered across the nation.

  • PDF

Peroxiredoxins and the Regulation of Cell Death

  • Hampton, Mark B.;O'Connor, Karina M.
    • Molecules and Cells
    • /
    • v.39 no.1
    • /
    • pp.72-76
    • /
    • 2016
  • Cell death pathways such as apoptosis can be activated in response to oxidative stress, enabling the disposal of damaged cells. In contrast, controlled intracellular redox events are proposed to be a significant event during apoptosis signaling, regardless of the initiating stimulus. In this scenario oxidants act as second messengers, mediating the post-translational modification of specific regulatory proteins. The exact mechanism of this signaling is unclear, but increased understanding offers the potential to promote or inhibit apoptosis through modulating the redox environment of cells. Peroxiredoxins are thiol peroxidases that remove hydroperoxides, and are also emerging as important players in cellular redox signaling. This review discusses the potential role of peroxiredoxins in the regulation of apoptosis, and also their ability to act as biomarkers of redox changes during the initiation and progression of cell death.

Characteristics of Redox Agent with Additive in Steam-Iron Process for the High Purity Hydrogen Production (고순도 수소 생성을 위한 SIP법에서 첨가제에 따른 환원 특성)

  • Jeon, Bup-Ju;Kim, Sun-Myung;Park, Ji-Hun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.340-348
    • /
    • 2011
  • Effects of various inorganic-metal oxide (Zr, Zn, Si, Al and Ca as promoters and stabilizers) additive on the reduction rate of iron oxide and the composition of forming hydrogen using the steam-iron cycle operation was investigated. The reduction rate of redox agent with additive was determined from weight change by TGA. The changes of weight loss and reduction rate according to redox agent with various additive affected the hydrogen purity and cycle stability of the process. The cyclic micro reactor showed that hydrogen purity exceeding 95% could be obtained by the water splitting with Si/Fe, Zn/Fe, Zr/Fe redox agents. The redox agents with these elements had an affect on redox cycle stability as a good stabilizer for forming hydrogen by the steam-iron process.

Relationship of the Redox State of Pyridine Nucleotides and Quinone Pool with Spectral Complex Formation in Rhodobacter sphaeroides 2.4.1 (Rhodobacter sphaeroides 2.4.1 내의 pyridine nucleotide와 quinone pool의 redox 상태와 광합성기구의 합성과의 상관관계)

  • Ko, In-Jeong;Oh, Jeong-Il
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.852-858
    • /
    • 2009
  • The homeostasis of the pyridine nucleotide pool [NAD(P)H and NAD(P)$^+$] is maintained in Rhodobacter sphaeroides mutant strains defective in the cytochrome bci complex or the cytochrome c oxidases in terms of its concentration and redox state. Aerobic derepression of the puf operon, which is under the control of the PrrBA two-component system, in the CBB3 mutant strain of R. sphaeroides was shown to be not the result of changes in the redox state of the pyridine nucleotides and the ubiquinone/ubiquinol pool. Using the bc$_1$ complex knock-out mutant strain of R. sphaeroides, we clearly demonstrated that the inhibitory effect of cbb$_3$, oxidase on spectral complex formation is not caused indirectly by the redox change of the ubiquinone/ubiquinol pool.

Redox Property of Vanadium Oxide and Its Behavior in Cataltic Oxidation

  • 김영호;이호인
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.12
    • /
    • pp.1457-1463
    • /
    • 1999
  • Structure and their redox property of the vanadium oxides prepared by decomposing NH₄VO₃ at various temperatures were studied by XRD, SEM, XPS, and temperature programmed reduction/temperature programmed oxidation (TPR/TPO) experiment. All TPR profiles have two sharp peaks in the temperature range 650-750℃, and the area ratio of the two sharp peaks changed from sample to sample. There were three redox steps in TPR/TPO profiles. The oxidation proceeded in the reverse order of the reduction process, and both the reactions proceeded via quite a stable intermediates. The changes of the morphological factor $(I_{(101)}/I_{(010)})$, the ratio of $O_{1S}$ peak area (O$_{1S}$( α)/O$_{1S}$( β)) in the XPS results, and the ratio of hydrogen consumption in TPR profiles with various vanadium oxides showed the distinct relationship between the structural property and their redox property of vanadium oxides. The change of the specific yield of phthalic anhydride with various vanadium oxides showed a very similar trend to those of the peak area ratio in TPR profiles, which meant that the first reduction step related to the partial oxidation of o-xylene on the vanadium oxide catalyst.

Nanogap-Based Electrochemical Detection of Protein, Virus, and Bacteria

  • Park, Dae Keun;Kim, Soohyun;Yun, Kum-Hee;Pyo, Hanna;Kang, Aeyeon;Kim, Daehee;Lee, Cho Yeon;Yun, Wan Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.353.2-353.2
    • /
    • 2016
  • We studied electrochemical detection of Botulinum neurotoxin, Vaccinia virus, and Streptococcus Pneumoniae based on nanogap device. Target bio substances were employed as representative targets of protein, virus, and bacteria, respectively. Redox current generated by ferri/ferrocyanide as an electroactive probe was enhanced according to gap distance which was controlled by surface-catalyzed chemical deposition. We found that enhanced electrochemical signal leads more sensitive signal changes according to selective interaction of target and its complementary elements on the electrode or gap area. In case of Botulinum neurotoxin, the redox signal showed a time-dependent increase due to cleavage of the immobilized peptide which blocked redox cycling. Redox cycling was also hindered by Vaccinia virus and Streptococcus Pneumoniae which were selectively immobilized in the gap area.

  • PDF

유기오염물의 분해에 의한 오염토양내 비소종 변화 영향

  • 천찬란;이상훈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.347-350
    • /
    • 2002
  • Arsenic speciation changes between As(V) and As(III) are subject to changes in accordance with redox conditions in the environment. It is common to find contaminated sites associated with mixed wastes including both organic pollutants and heavy metals. We conducted microcosm experiment under hypothesis that the co-disposed organic pollutants would influence on the arsenic forms and concentrations, via degradation of the organic pollutants and the consequent impact on the redox conditions in soil. Artificially contaminated soil samples were run for 40 days with control samples without artificial contamination. We noticed arsenic in the contaminated soil showed different behaviour compared with the arsenic in the control soil. The findings indicate degradation of organic pollutants in the contaminated soil influenced on the arsenic speciation and concentrations. A further work is needed to understand the process quantitatively. However, we could confirm that degradation of organic pollutants can influence on the abiotic processes associated with geochemical reactions in contaminated soil. Degradation of organic pollutants can increase the mobility and toxicity of arsenic in soil and sediment by changing redox conditions in the geological media and subsequently from As(V) to As(III).

  • PDF

Enhancement of UVB radiation-mediated apoptosis by knockdown of cytosolic NADP+-dependent isocitrate dehydrogenase in HaCaT cells

  • Lee, Su Jeong;Park, Jeen-Woo
    • BMB Reports
    • /
    • v.47 no.4
    • /
    • pp.209-214
    • /
    • 2014
  • Ultraviolet B (UVB) radiation induces the production of reactive oxygen species (ROS) that promote apoptotic cell death. We showed that cytosolic $NADP^+$-dependent isocitrate dehydrogenase (IDPc) plays an essential role in the control of cellular redox balance and defense against oxidative damage, by supplying NADPH for antioxidant systems. In this study, we demonstrated that knockdown of IDPc expression by RNA interference enhances UVB-induced apoptosis of immortalized human HaCaT keratinocytes. This effect manifested as DNA fragmentation, changes in cellular redox status, mitochondrial dysfunction, and modulation of apoptotic marker expression. Based on our findings, we suggest that attenuation of IDPc expression may protect skin from UVB-mediated damage, by inducing the apoptosis of UV-damaged cells.

Ion and solvent transport during the redox reaction of Polypyrrole and poly(N-substituted pyrrole) films in aprotic solutions

  • Lee Hochun;Kwak Juhyoun
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.52-54
    • /
    • 1998
  • Polypyrrole (PPy), Poly(N-methyl Pyrrole) (PMPy) and Poly(N-phenyl Pyrrole) (PPhPy) films in acetonitrile (Af and propylene carbonate (PC) have been compared focusing on their different ion and solvent transport behaviors. During the redox reaction of PPy films, cation, anion, and solvent take part in mass transport. Whereas during the redox reaction of PMPy and PPhPy films, anion and solvent transport are dominant but cation transport is negligible. In addition, solvent transport occurs in the same direction with cation transport for PPy films. On the other hand, solvent transport occurs in the opposite direction to anion transport for PMPy films, and it changes its amount and direction with the kind of the dopant anion and the solvent used at electropolymerization for PPhPy films.