• Title/Summary/Keyword: red kohlrabi

Search Result 8, Processing Time 0.019 seconds

Anti-Diabetic and Anti-Inflammatory Effects of Green and Red Kohlrabi Cultivars (Brassica oleracea var. gongylodes)

  • Jung, Hyun Ah;Karki, Subash;Ehom, Na-Yeon;Yoon, Mi-Hee;Kim, Eon Ji;Choi, Jae Sue
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.4
    • /
    • pp.281-290
    • /
    • 2014
  • The aim of the present study was to evaluate the anti-diabetic, anti-inflammatory, antioxidant potential, and total phenolic content (TPC) of green and red kohlrabi cultivars. Anti-diabetic and anti-inflammatory activities were evaluated via protein tyrosine phosphatase (PTP1B) and rat lens aldose reductase inhibitory assays and cell-based lipopolysaccharide (LPS)-induced nitric oxide (NO) inhibitory assays in RAW 264.7 murine macrophages. In addition, scavenging assays using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical, and peroxynitrite ($ONOO^-$) were used to evaluate antioxidant potential and TPC was selected to assess phytochemical characteristics. Between the two kohlrabi cultivars, red kohlrabi (RK) had two times more TPC than green kohlrabi (GK) and showed significant antioxidant effects in DPPH, ABTS, and $ONOO^-$ scavenging assays. Likewise, methanol (MeOH) extracts of RK and GK inhibited LPS-induced NO production in a dose dependent manner that was further clarified by suppression of iNOS and COX-2 protein production. The MeOH extracts of RK and GK exhibited potent inhibitory activities against PTP1B with the corresponding $IC_{50}$ values of $207{\pm}3.48$ and $287{\pm}3.22{\mu}g/mL$, respectively. Interestingly, the RK MeOH extract exhibited significantly stronger anti-inflammatory, anti-diabetic, and antioxidant effects than that of GK MeOH extract. As a result, our study establishes that RK extract with a higher TPC might be useful as a potent anti-diabetic, antioxidant, and anti-inflammatory agent.

Mathematical modeling of growth of Escherichia coli strain RC-4-D isolated from red kohlrabi sprout seeds (적콜라비 새싹채소 종자에서 분리한 Escherichia coli strain RC-4-D의 생장예측모델)

  • Choi, Soo Yeon;Ryu, Sang Don;Park, Byeong-Yong;Kim, Se-Ri;Kim, Hyun-Ju;Lee, Seungdon;Kim, Won-Il
    • Food Science and Preservation
    • /
    • v.24 no.6
    • /
    • pp.778-785
    • /
    • 2017
  • This study was conducted to develop a predictive model for the growth of Escherichia coli strain RC-4-D isolated from red kohlrabi sprout seeds. We collected E. coli kinetic growth data during red kohlrabi seed sprouting under isothermal conditions (10, 15, 20, 25, and $30^{\circ}C$). Baranyi model was used as a primary order model for growth data. The maximum growth rate (${\mu}max$) and lag-phase duration (LPD) for each temperature (except for $10^{\circ}C$ LPD) were determined. Three kinds of secondary models (suboptimal Ratkowsky square-root, Huang model, and Arrhenius-type model) were compared to elucidate the influence of temperature on E. coli growth rate. The model performance measures for three secondary models showed that the suboptimal Huang square-root model was more suitable in the accuracy (1.223) and the suboptimal Ratkowsky square-root model was less in the bias (0.999), respectively. Among three secondary order model used in this study, the suboptimal Ratkowsky square-root model showed best fit for the secondary model for describing the effect of temperature. This model can be utilized to predict E. coli behavior in red kohlrabi sprout production and to conduct microbial risk assessments.

Isolation and Identification of Bioactive Compounds from the Tuber of Brassica oleracea var. gongylodes

  • Prajapati, Ritu;Seong, Su Hui;Kim, Hyeung Rak;Jung, Hyun Ah;Choi, Jae Sue
    • Natural Product Sciences
    • /
    • v.26 no.3
    • /
    • pp.214-220
    • /
    • 2020
  • Brassica oleracea var. gongylodes (red kohlrabi) is a biennial herbaceous vegetable whose edible bulbotuber-like stem and leaves are consumed globally. Sliced red kohlrabi tubers were extracted using methanol and the concentrated extract was partitioned successively with dichloromethane (CH2Cl2), ethyl acetate (EtOAc), n-butanol (n-BuOH) and water (H2O). Repeated column chromatography of EtOAc fraction through silica, sephadex LH-20 and RP-18 gel led to isolation of eleven compounds of which compound 1 was a new glycosylated indole alkaloid derivative, 1-methoxyindole 3-carboxylic acid 6-O-β-D-glucopyranoside. Others were known compounds namely, β-sitosterol glucoside (4), 5-hydroxymethyl-2-furaldehyde (5), methyl-1-thio-β-D-glucopyranosyl disulfide (6), 5-hydroxy-2-pyridinemethanol (7), (3S,4R)-2-deoxyribonolactone (8), n-butyl-β-D-fructopyranoside (9), uridine (10) and three fructose derivatives, D-tagatose (11), β-D-fructofuranose (12) and β-D-fructopyranose (13). Similarly, isolation from CH2Cl2 fraction gave two known indole alkaloids, indole 3-acetonitrile (2) and N-methoxyindole 3-acetonitrile (3). The structure elucidation and identification of these compounds were conducted with the help of 13C and 1H NMR, HMBC, HMQC, EIMS, HR-ESIMS and IR spectroscopic data, and TLC plate spots visualization. Compounds 2, 3, 4, 5, 6, 7, 8 and 9 are noted to occur in kohlrabi for the first time. Different bioactivities of these isolated compounds have been reported in literature.

Isolation and Identification of Sterol Compounds from the Red Kohlrabi (Brassica oleracea var. gongylodes) Sprouts (적콜라비 (Brassica oleracea var. gongylodes) 새싹으로부터 sterol 화합물의 분리 및 동정)

  • Lee, Jae-Woong;Lee, Dae-Young;Cho, Jin-Gyeong;Baek, Nam-In;Lee, Youn-Hyung
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.4
    • /
    • pp.207-211
    • /
    • 2010
  • The sprouts of Brassica oleracea var. gongylodes were extracted with 100% MeOH and the concentrated extract was partitioned with EtOAc, n-BuOH and $H_2O$, successively. From the EtOAc fraction, three sterols were isolated through the repeated silica gel and ODS column chromatographies. On the basis of physico-chemical and spectroscopic data including NMR, MS, and IR, the chemical structures of the sterols were determined as ${\beta}$-sitosterol (1), brassicasterol (2), and 7-ketobrassicasterol (3). Compound 1 is usually observed in plant. Compounds 2 is observed in Brassica sp., and compounds 3 have very rarely occurred in natural source including plant.

Effect of cooking methods on the phytosterol content in nine selected vegetables

  • Shin, Jung-Ah;Park, Jong-Min;Lee, Ki-Teak
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.1
    • /
    • pp.87-99
    • /
    • 2016
  • Phytosterol contents in nine vegetables such as paprika (red, yellow, and orange), kohlrabi, bamboo shoot, cherry tomato, cucumber, Chinese chive, and corn were analyzed by gas chromatography. Individual contents of ${\beta}$-sitosterol, campesterol, and stigmasterol in fresh and cooked vegetables (boiling, grilling, stir-frying, deep-frying, steaming, roasting, and microwaving) were determined and compared. Total phytosterol content of paprika, cucumber, Chinese chive and cherry tomato ranged from 23.19 to 46.51 mg/kg (0.002-0.005%) of fresh weight of raw vegetables. Total phytosterol content variation (%) was obtained as follows: [(the content of phytosterol after cooking) - (the content of phytosterol before cooking)] / (the content of phytosterol before cooking) ${\times}100$. Total phytosterol content was found to be high in raw kohlrabi at 138.99 mg/kg fw (0.01%), in corn at 302.86 mg/kg fw (0.03%), and in bamboo shoot at 443.15 mg/kg fw (0.04 %). Total phytosterol content variation (%) in orange paprika ranged from 27.5 to 267.3 while that in cherry tomato ranged from -11.0 to 337.5. Generally, high content variation of total phytosterol was found in stir-fried and deep-fried vegetables. Therefore, higher phytosterol levels were obtained from cooked vegetables than raw vegetables. We suggest that these data will be useful to investigate cooking methods for increased intake of phytosterols.

Optimal Cultivar Selection of Kohlrabi for Hydroponics Culture in a Closed-type Plant Factory System (완전제어형 식물공장내 수경재배용 콜라비 품종 선발)

  • Uoon, Chan-Il;Cha, Mi-Kyung;Jeon, Yoon-A;Cho, Young-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.297-300
    • /
    • 2017
  • Plant factory can control artificially the environments for crop cultivation, so they can produce high quality agricultural products all year round. This study was carried to select suitable kohlrabi cultivar for hydroponics in a closed-type plant factory system. We used three cultivars of red kohlrabi, 'Asac kohl', 'Kolibri', and 'Purple king' as plant materials. The artificial light source was LED light, light intensity and photoperiod were $249{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ and 12/12 hours (day/night period), respectively. Hydroponic cultivation type was used circulating deep flow technique. At 43 days after transplanting, fresh weight of whole plant and tuber and leaf area were not significantly different among cultivars. Shoot dry weight and tuber dry weight were highest in 'Asac kohl' cultivar, and number of leaves was highest in 'Purple king' cultivar. Sugar content and yield were highest in 'Asac kohl' cultivar. Considering the growth and marketable yields, 'Asac kohl' was the optimal kohlrabi cultivar for hydroponic cultivation in a closed-type plant factory system.

Effect of Non-Perforated Breathable Films on the Storability of Sprout Vegetables in Modified Atmosphere Condition (레이저 가공 비천공 Breathable필름이 새싹채소의 Modified Atmosphere 저장에 미치는 영향)

  • Choi, In-Lee;Baek, Jun Pill;Kang, Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.167-174
    • /
    • 2013
  • Six kinds of sprout vegetables were applied three and six types of non-perforated breathable propylene films (NPB film) for individual and mixed modified atmosphere (MA) package condition at $10^{\circ}C$ on this study. As a tah tasai, kohlrabi, rape, chinese cabbage, red radish, broccoli sprouts were packaged by 20,000, 60,000, and 100,000 $cc{\cdot}m^{-2}{\cdot}day{\cdot}atm$ non-perforated breathable films for seven days storage. Mixed sprout vegetables were used 20,000 cc, 40,000 cc, 60,000 cc, 80,000 cc, and 100,000 $cc{\cdot}m^{-2}{\cdot}day{\cdot}atm$ non-perforated breathable films for seven days storage. Loss rate of fresh weight, changes of carbon dioxide, oxygen, and ethylene gas concentration were measured during the storage. Visual quality and off-flavor were rated by panel tests after seven days storage. Each sprout vegetable storage with film tests had been shown under the 0.5% fresh weight loss in every packaged films, and the 20,000cc NPB film package had been suitable atmosphere condition in the carbon dioxide and oxygen gas concentration. Appearance and off-odor of sprouts packaged with 20,000cc NPB film were shown better than other films because of the proper gas movement through the film to outside during the storage. Fresh weight loss of the mixed sprout vegetables had no difference among the NPB films for seven days storage. The 20,000 cc film had been resulted in that exchange rate of carbon dioxide and oxygen was highest cause of low film permeability than sprouts respiration. But the film is not good for storage because it has been made poor value of off-order even showed high visual quality from panel test after storage. 40,000 cc and 60,000 cc non-perforated breathable films were more suitable for mixed sprout vegetable storage at $10^{\circ}C$. These result suggested that 20,000 cc NPB film was good for single packaged sprout vegetable and 40,000 cc and 60,000 cc non-perforated breathable films were good for mixed packaged sprout vegetable.

Anti-Diabetic Effects of Sprouts in High-Fat Diet and Streptozotocin-Induced Type II Diabetes Mellitus Mice (고지방식이와 STZ 유도 제2형 당뇨 마우스에서 새싹의 항당뇨 효과)

  • Lee, Hyun-Seo;Kang, Hyun Ju;Jeon, In Hwa;Youm, Jung Ho;Jang, Seon Il
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.11
    • /
    • pp.1658-1664
    • /
    • 2014
  • Sprout vegetables containing various types of polyphenols and flavonoids, are known to have anti-inflammatory, antioxidant, cholesterol-lowering, and anti-obesity activities. However, there have been few reports on the anti-diabetic efficacy of sprout vegetables. Here, we investigated the anti-diabetic effects of sprout extract obtained from buckwheat, beet, rape, broccoli, kohlrabi, red young radish, and dachai, in high fat diet (HFD) and streptozotocin (STZ)-induced type II diabetes mellitus mice. The mice were fed a HFD (60% calories as fat) for 8 weeks prior to intraperitoneal injection with STZ (75 mg/kg). The diabetic mice were divided into four groups: standard diet (STD, 10% calories fat), HFD, HFD with sprout extract (SPE) and HFD with metformin (MET). After 4 weeks, body weight gain was much lower in both SPE and MET groups than in HFD group. In contrast, there was no difference experiment groups regarding food intake ratio. The level of fasting blood glucose was significantly lower in the SPE and MET groups compared to the HFD group. Oral glucose tolerance and insulin tolerance in the SPE and MET groups were significantly ameliorated in comparison to the HFD group. The concentrations of serum total cholesterol, triglycerides, and LDL cholesterol in the SPE and MET groups were remarkably reduced in comparison to the HFD group, and HDL cholesterol concentration was higher in the SPE and MET groups than in the HFD group. Glutamate oxaloacetate transaminase and glutamate pyruvate transaminase levels were between SPE and HFD groups. The serum insulin and leptin concentrations were significantly reduced in both the SPE and MET groups compared to the HFD group. Therefore, these results indicate that sprout extract could improve insulin resistance and attenuate blood glucose level in HFD/STZ-induced type II diabetes mellitus mice. We conclude that this study may provide positive insights into sprout extract as a functional food ingredient for treatment of type II diabetes mellitus.