• Title/Summary/Keyword: red ginseng vinegar

Search Result 15, Processing Time 0.021 seconds

Studies on Ginseng Vinegar (인삼식초에 관한연구)

  • 김승겸
    • The Korean Journal of Food And Nutrition
    • /
    • v.12 no.5
    • /
    • pp.447-454
    • /
    • 1999
  • Ginseng-vinegars were produced by the fermentation of 5% ethanol solution contained ginseng, red ginseng, ginseng marc and red ginseng marc using Acetobacter aceti 3281 for 26 days at 35$^{\circ}C$. The ginseng and red ginseng vinegar contained 0.236mg/ml of total sugar 0.236mg/ml of reducing sugar and 0.05% of ethanol and 1.005 of specific gravity 8,58CFU of viable cell count 3,24 of pH and 5.11% of acidity. Whereas the vinegars produced using the water-extracted red ginseng marc and the ethanol-extracted red ginseng marc were consisted of total sugar was 1.27mg/ml and 1.60mg/ml reducing sugar was 0.077mg/ml and 0.725mg/ml specific gravity was 1.001 and 1.004 the number of viable cells was 8.51CFU/ml and 8.1CFU/ml pH was 2.81 and 2.89 acidity was 5.18% and 5.32% respectvely ethanol concentration was 0.05% in both cases. In five-grade scoring test of sensory evaluation, it was estimated favorable that each vinegar made by were-extracted red ginseng marc, ethanol-extracted red ginseng marc ginseng and red ginseng ginseng from 0.5 to 32% of water-and ethanol-extract red ginseng was extracted with 10% white vinegar for 30 days. The best sensory vinegars were obtained that ginseng of 0.4~1.6% above red glnsend of 0.8% water-extracted red ginseng marc of 0.8~1.6% and ethanol-extracted red ginseng marc of 0.4~1.6% added in 10% white vinegar respectively.

  • PDF

Change of Ginsenoside Composition in Ginseng Extract by Vinegar Process

  • Ko, Sung-Kwon;Lee, Kyung-Hee;Hong, Jun-Kee;Kang, Sung-An;Sohn, Uy-Dong;Im, Byung-Ok;Han, Sung-Tai;Yang, Byung-Wook;Chung, Sung-Hyun;Lee, Boo-Yong
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.509-513
    • /
    • 2005
  • The purpose of this study was to develop a new preparation process of ginseng extract using high concentrations of ginsenoside $Rg_3$, a special component in red ginseng. From when the ginseng saponin glycosides transformed into the prosapogenins chemically, they were analyzed using the HPLC method. The ginseng and ginseng extract were processed with several treatment conditions of an edible brewing vinegar. The results indicated that ginsenoside $Rg_3$ quantities increased over 4% at the pH 2-4 level of vinegar treatment. This occurred at temperatures above $R90^{\circ}C$, but not occurred at other pH and temperature condition. In addition, the ginseng and ginseng extract were processed with the twice-brewed vinegar (about 14% acidity). This produced about 1.5 times more ginsenoside $Rg_3$ than those processed with regular amounts of brewing vinegar (about 7% acidity) and persimmon vinegar (about 3% acidity). Though the white ginseng extract was processed with the brewing vinegar over four hr, there was no change for ginsenoside $Rg_3$. However, the VG8-7 was the highest amount of ginsenoside $Rg_3$ (4.71%) in the white ginseng extract, which was processed with the twice-brewed vinegar for nine hr. These results indicate that ginseng treated with vinegar had 10 times the quantity of ginsenoside $Rg_3$, compared to the amount of ginsenoside $Rg_3$ in the generally commercial red ginseng, while ginsenoside $Rg_3$ was not found in raw and white ginseng.

Studies on Wax Gourd - Ginseng Vinegar (동아홍삼식초에 관한 연구 - 1)

  • 안용근;김승겸;신철승
    • The Korean Journal of Food And Nutrition
    • /
    • v.14 no.1
    • /
    • pp.52-58
    • /
    • 2001
  • The 7.5% wax gourd-added mash composed of 7.5% brown rice. 1.5% malt. 3% red ginseng and 6% ethanol solution, and mash which 7.5% wax gourd was not added were fermented as vinegar and produced acetic acid, with the use of Acetobacter aceti 3281, at 25$\^{C}$ for 150 days. As the result, vinegar of no added-wax gourd was shown containing 3.3 % total sugar, 1.5% reducing sugar, 11.5 absorbance at 280nm, 2.7$\mu$M/ml amino acid, and 0.5 % ethanol, 3.0 pH, 4.59% acidity, 5.2% organic acid. The 7.5% wax gourd-added vinegar showed 2.3% of total sugar, 1.1% reducing sugar, 10.8 absorbance at 280nm, 2.1 $\mu$ M/ml amino acid, 1.2% ethanol, 3.1 pH, 4.61% acidity, 4.9% organic acid. In preference test of 5-points in full, red ginseng vinegar showed 3.86, and wax gourd-red ginseng vinegar 3.66.

  • PDF

Manufacture of the Red Ginseng Vinegar Fermented with Red Ginseng Concentrate and Rice Wine, and its Quality Evaluation (홍삼 농축액과 쌀막걸리의 동시 발효를 통한 홍삼 식초의 제조 및 품질평가)

  • Kim, Dong-Kuk;Baik, Moo-Yeul;Kim, Hae-Kyung;Hahm, Young-Tae;Kim, Byung-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.179-184
    • /
    • 2012
  • The objectives of this study were to manufacture the red ginseng vinegar based on rice wine and red ginseng concentrate (RGC) using $Acetobacter$ $aceti$ and to evaluate its quality with remaining crude saponin contents and sensory score. The maximum prosapogenin (ginsenoside-Rh1, Rh2, Rg2, and Rg3) content in RGC regarding ginseng was obtained from such processes as steaming, drying, and extraction. When RGC was added into a rice wine in the range of 0-1% before acetic fermentation, pH decreased slowly during 20 days depending on RGC contents, but total acidity was not dependent on RGC contents. Compared to the crude saponin content (71.75 mg/g) of ginseng vinegar added RGC after acetic fermentation, the fermentation with RGC produced a lower crude saponin content (16.95 mg/g) in red ginseng vinegar. Sensory scores such as odor, taste, and overall preference, however, vinegar fermented with RGC were higher than those of vinegar added RGC after acetic fermentation.

The Change of Ginsenoside Composition in American Ginseng (Panax quinquefolium) Extract by the Microwave and Vinegar Process (서양삼 추출물의 초단파 및 식초 처리에 의한 인삼 사포닌 성분 변화)

  • Jo, Hee Kyung;Gwak, Hyeon Hui;Im, Byung Ok;Cho, Soon Hyun;Ko, Sung Kwon
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.2
    • /
    • pp.107-112
    • /
    • 2014
  • The purpose of this study is to develop a new preparation process of American ginseng (Panax quinquefolium) extract featuring high concentration of ginsenoside $Rg_3$, $Rg_5$, and $Rk_1$, Red ginseng special components. Chemical transformation from ginseng saponin glycosides to prosapogenin was analyzed by the HPLC. Extracts of American ginseng were processed under several treatment conditions of microwave and vinegar (about 14% acidity). The results showed that the quantity of ginsenoside $Rg_3$ increased by over 0.9% at the 20 minutes of the pH 2~4 vinegar and microwave American ginseng ethanol extract compared with other process times. The result of MAG-20 indicates that the American ginseng microwave and vinegar-processed American ginseng extracts (about 14% acidity) treated for 20 minutes produced the highest amount of ginsenoside $Rg_3$ (0.969%), $Rg_5$ (1.071%), and $Rk_1$ (0.247%). Besides, MAG-15 indicates that the microwave - and vinegar-processed American ginseng extracts (about 14% acidity) treated for 15 minutes produced the highest amount of ginsenoside $Rg_3$ (0.772%), $Rg_5$ (1.330%), and $Rk_1$ (0.386%). This indicates that American ginseng treated with microwave and vinegar had the quantity of the ginsenoside $Rg_3$ over 32 times the amount of the ginsenoside $Rg_3$ (which was not found in raw and American ginsengs) in the average commercial Red ginseng.

The Change of Ginsenoside Composition in Ginseng Leaf and Stem Extract by the Microwave and Vinegar Process (인삼 잎 줄기 추출물의 초단파 및 식초 처리에 의한 인삼 사포닌 성분 변화)

  • Kim, Shin Jung;Kim, Ju Duck;Ko, Sung Kwon
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.2
    • /
    • pp.149-153
    • /
    • 2013
  • The purpose of this study was to develop a new preparation process of ginseng extract with the high concentration of prosapogenin, the specific component in Red ginseng. Chemical transformation from the ginseng saponin glycosides to the prosapogenin was analyzed by the HPLC. The extracts of ginseng leaf and stem were processed at the several treatment conditions of the microwave and vinegar(about 14% acidity). MGLS-20 findings show that the ginseng leaf and stem extracts that had been processed with microwave and vinegar for 20 minutes peaked in the level of ginsenoside $Rg_3$(0.906%). MGLS-25 peaked in the level of ginsenoside $Rg_5$(0.329%) in the ginseng leaf and stem extract processed with microwave and vinegar for 25 minute. And the other kinds of ginseng prosapogenin did not show a higher content.

The Change of Ginsenoside Composition in White Ginseng and Fine White Ginseng Extract by the Microwave and Vinegar Process (백삼 및 백미삼 추출물의 초단파 및 식초 처리에 의한 인삼 사포닌 성분 변화)

  • Jo, Hee Kyung;Im, Byung Ok;Ko, Sung Kwon
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.1
    • /
    • pp.77-83
    • /
    • 2014
  • The purpose of this study is to develop a new preparation process of ginseng extracts having high concentrations of ginsenoside $Rg_3$, $Rg_5$ and $Rk_1$, a special component of Red ginseng. Chemical transformation from ginseng saponin glycosides to prosapogenin was analyzed by the HPLC. Extracts of White ginseng (Panax ginseng) and Fine White ginseng were processed under several treatment conditions including microwave and vinegar (about 14% acidity) treatments. Results of those treatments showed that the quantity of ginsenoside $Rg_3$ increased by over 0.6% at 4 minutes of pH 2~4 vinegar and microwave treatments. The results of processing with MWG-4 indicate that the Microwave and vinegar processed white ginseng extracts (about 14% acidity) that had gone through 4-minute treatments were found to contain the largest amount of ginsenoside $Rg_3$ (0.626%), $Rg_5$ (0.514%) and $Rk_1$ (0.220%). Results of treatments with MFWG-5 showed that the Fine White ginseng extracts that had been processed with microwave and vinegar (about 14% acidity) for 5 minutes were found to contain the largest amount of ginsenoside $Rg_3$ (4.484%), $Rg_5$ (3.192%) and $Rk_1$ (1.684%). It is thought that such results provide basic information in preparing White ginseng and Fine White ginseng extracts with functionality enhanced.

The Change of Ginsenoside Composition in Notoginseng Root(Panax notoginseng) Extract by the Microwave and Vinegar Process (초단파 및 식초 처리에 의한 삼칠삼 추출물의 인삼 사포닌 성분 변화)

  • Jo, Hee Kyung;Cho, Soon Hyun;Ko, Sung Kwon
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.4
    • /
    • pp.320-325
    • /
    • 2014
  • The purpose of this study is to develop a new preparation process of Notoginseng root(Panax notoginseng) extracts having high concentrations of ginsenoside $Rg_3$, $Rg_5$, $Rk_1$ and $Rh_4$, a special component of Red and Black ginseng(Panax ginseng). Chemical transformation from ginseng saponin to prosapogenin was analyzed by the HPLC. Extracts of Notoginseng root was processed under several treatment conditions including microwave and vinegar(about 14% acidity) treatments. Results of those treatments showed that the quantity of ginsenoside $Rg_3$ increased by over 7.6% at 15 minutes of pH 2~4 vinegar and microwave treatments. The results of processing with MPN-15 indicate that the microwave and vinegar(about 14% acidity) processed Notoginseng root extracts that had gone through 15-minute treatments were found to contain the largest amount of ginsenoside $Rg_3$(7.639%), $Rg_5$(6.061%), $Rk_1$(1.516%) and $Rh_4$(1.599). It is thought that such results provide basic information in preparing Notoginseng root extracts with functionality enhanced.

The Change of Ginsenoside Composition in the Ginseng (Panax ginseng) Flower Buds by the Ultrasonication and Vinegar Process

  • Gwak, Hyeon Hui;Hong, Jeong Tae;Ahn, Chang Ho;Kim, Ki Jung;Kim, Sung Gi;Yoon, Suk Soon;Im, Byung Ok;Cho, Soon Hyun;Nam, Yun Min;Ko, Sung Kwon
    • Natural Product Sciences
    • /
    • v.21 no.2
    • /
    • pp.93-97
    • /
    • 2015
  • The purpose of this study was to develop a new ginseng (Panax ginseng) flower buds extract with the high concentration of ginsenoside Rg3, Rg5, Rk1, Rh1 and F4, the Red ginseng special component. Chemical transformation from the ginseng saponin glycosides to the prosapogenin was analyzed by the HPLC. The ginseng flower buds were processed at the several treatment conditions of the ultrasonication (Oscillator 600W, Vibrator 600W) and vinegar (about 14% acidity). The result of UVGFB-480 was the butanol fraction of ginseng flower buds that had been processed with ultrasonication and vinegar for 480 minutes gained the highest amount of ginsenoside Rg5 (3.548%), Rh1 (2.037%), Rk1 (1.821%), Rg3 (1.580%) and F4 (1.535%). The ginsenoside Rg5 of UVGFB-480 was found to contain 14.3 times as high as ginseng flower buds extracts (GFB, 0.249%).

A Study on the Vinegar Fermentation Processes of Fresh Korean Ginseng Extract Using Mix Microbial Yinkin (유익하게 인체에 작용하는 균(유인균)을 이용한 인삼발효식초 제조과정에 대한 특성연구)

  • Hwang, Se Ran;Destiani, Supeno;Kwon, Soon Hong;Chung, Sung Won;Kwon, Soon Goo;Park, Jong Min;Kim, Jong Soon;Choi, Won Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.4
    • /
    • pp.345-350
    • /
    • 2017
  • Saponin is the most pharmaceutical active ingredients of the ginseng plant, it was called "Ginsenoside" which means the Glycoside of ginseng that composed glycosides and aglycones. The human body will absorb the saponin easily if these substrate was decomposed by active microorganism. Fermentation is the most convenient technique to decompose this active ingredients. The purpose of this research was to study the sugar content, pH and acidity development during the ginseng fermentation process. Fresh Korean ginseng and red ginseng extract was used as the main ingredient. The concentrated of pure ginseng extract was added to increase the saponin extract. Furthermore, the mix microbial powder was added as starter to increase the fermentation efficiency. The ginseng was fermented in fermentation chamber at temperature $37^{\circ}C$ during 70 days. In the end of experiment the sugar content was decreased from 24% to 7.65%, The pH was decreased from 6.5 to 3.4, and the acidity level was incresed from 0% to 1.2%.