• Title/Summary/Keyword: red ginseng manufacturing

Search Result 42, Processing Time 0.044 seconds

Preparation of Red Ginseng Extract Rich in Acidic Polysaccharide from Red Tail Ginseng Marc Produced After Extraction with 70% Ethyl Alcohol (홍미삼 알콜 추출박을 이용한 산성다당체 다량 함유 홍삼 엑기스 제조)

  • 도재호;이종원
    • Journal of Ginseng Research
    • /
    • v.20 no.1
    • /
    • pp.60-64
    • /
    • 1996
  • In this study, we investigated the appropriate conditions to extract acidic polysaccharide and to prepare red ginseng extract being rich in acidic polysaccharide from red tail ginseng marc produced after manufacturing alcoholic extract from red tail ginseng. Amount of acidic polysaccharide in red tail ginseng marc was about 11%. The best condition for the extraction of acidic polysaccharide from the marc was using of 3~5 mg of $\alpha$-amylase/g residue/15 ml of distilled water, and the amount of acidic polysaccharide in water extract of the residue treated with $\alpha$-amylase was about 27%. So, it is possible to manufacture red ginseng extract being rich in acidic polysaccharide using water extract of red tail ginseng alcoholic residue as extraction solvent. From the above results, we suggest that red tail ginseng residue produced by manufacturing alcoholic extract of red tail ginseng has high potencies in the utilization of waste material.

  • PDF

The Establishment of Optimum Conditions for Saccharification in Manufacturing Red Ginseng Sikhye

  • Hur, Sang-Sun;Choi, Suk-Won
    • Journal of Ginseng Research
    • /
    • v.31 no.4
    • /
    • pp.191-195
    • /
    • 2007
  • Red ginseng sikhye is one of Korean unique beverages with the addition of effective ingredients of ginseng. Considering economical and mechanical efficiency and quality of sikhye, the optimum conditions for saccharification is to saccharify at 90 degree celsius for 3 hours in the composition of 4% of malt, 20% of steamed rice, and 6% of red ginseng power. The red ginseng sikhye has high soluble solid content over 33% compared with conventional commercial sikhye. On the other hand, ginseng sikhye, which shows low pH, has more or less higher acidity than conventional commercial one. Especially the turbidity of the red ginseng sikhye is much higher than that of commercial sikhye, due to as high amount of rice as 20% compared with 3% in the commercial one. The use of high quantity of rice affected the level of turbidity in red ginseng sikhye. In this study, we wanted to establish optimum conditions for saccharification in manufacturing red ginseng sikhye which contains effective herbal medicinal ingredients maintaining the original taste of traditional sikhye.

Current Status of Korean Ginseng Products and Trends in Enhanced Functional Ginseng Products

  • Byungdae Lee;Tae-Eun Kwon;Hoon-Il Oh;Ho-jung Yoon
    • Journal of Ginseng Culture
    • /
    • v.6
    • /
    • pp.13-34
    • /
    • 2024
  • The abolishment of the red ginseng monopoly act by the Korean government in 1996 resulted in a drastic change in the Korean ginseng industry, leading to a significant increase in the market size and consumption of ginseng products. Red ginseng is most popular type, with approximately 74% of harvested fresh ginseng being processed into various red ginseng products. Since 1997, there has been a substantial increase in the cultivation of ginseng for production of red ginseng, which, in turn, has contributed to the proliferation of ginseng processing companies. To investigate the products of ginseng manufacturing businesses, we select 200 companies primarily engaged in ginseng processing or specializing solely in ginseng. Our survey on the status of ginseng industry covered 8 different categories. 1) Root ginseng: There were 66 companies involved in manufacturing red ginseng root, accounting for 33.0% of all surveyed companies. This was followed by black ginseng root with 36 companies (18.0%) and red ginseng fine roots with 22 companies (11%). 2) Red ginseng products: A total of 144 companies were involved in manufacturing red ginseng pouches, making it the most common product category. This was closely followed by 142 companies producing pure(100%) red ginseng extract concentrate. 3) Fermented red ginseng products: Companies producing fermented red ginseng extract concentrate products were the most numerous, totaling 26. Following this, companies producing fermented red ginseng stick and pouch products were next in line. 4) Ginseng products: There were 15 companies involved in the production of ginseng products, with the majority focusing on ginseng tea. 5) Black ginseng products: Companies producing black ginseng extract concentrate were the most numerous, with 31 companies, followed by 26 companies producing black ginseng extract pouches. 6) Taegeuk ginseng products: Only 5 companies were involved in the production of taegeuk ginseng products. 7) Fermented black ginseng, and 8) Ginseng berry products: These categories are manufactured by less than 5 companies each. However, the variety in ginseng berry products suggests the potential for future growth. In the 2000s, a trend emerged with the development of new processed products aimed at enhancing the functional components of red ginseng, and these products have captured the attention of consumers. However, this study primarily focuses on black ginseng, fermented red ginseng/fermented black ginseng, and ginseng berry products as they have exerted a significant influence on the overall ginseng industry.

Characterization of a Loess Module for Manufacturing Loess Red Ginseng

  • Kim, Il-Chool;Yang, Jung-Hwan;Hur, Sang-Sun
    • Journal of Ginseng Research
    • /
    • v.34 no.4
    • /
    • pp.282-287
    • /
    • 2010
  • An optimized manufacturing process was developed for the production of high-quality loess red ginseng using a hybrid process in which loess (yellow earth) was incorporated into the conventional ginseng manufacturing process system. We designed conventional ginseng processing facilities and prepared the loess module by baking loess that contained 42% water at $860^{\circ}C$ for 8 h. The loess module showed excellent performance in deodorization and humidity control. The optimum steaming temperature at which maximum expansion of starch organisms occurred was 90 to $98^{\circ}C$.

Extraction Condition of Acidic Polysaccharide from Korean Red Ginseng Marc (홍삼박으로부터 산성다당체의 추출조건 조사)

  • Lee, Jong-Won;Do, Jae-Ho
    • Journal of Ginseng Research
    • /
    • v.26 no.4
    • /
    • pp.202-205
    • /
    • 2002
  • This study was carried out to investigate the optimum conditions for extraction of acidic polysaccharide from red ginseng marc produced by manufacturing alcoholic and water extract from red ginseng. Extraction efficacy of acidic polysaccharide from dried red ginseng marc was higher than that before drying. The appropriate conditions for the extraction of acidic polysaccharide from red ginseng marc were particle size under 3.35 mm after drying red ginseng marc, 1∼2 hours of extraction time and 2∼3 extraction times, respectively. The amount of acidic polysaccharide in water extract from red ginseng marc treated with $\alpha$-amylase and cellulase increased about 20∼50%. From the above resuts, we suggest that red ginseng marc produced by manufacturing alcoholic and water extract of red ginseng has higher potencies in the utilization of waste materials.

Effects of Steam- and Dry-processing Temperatures on the Benzo(a)pyrene Content of Black and Red Ginseng (홍삼 및 흑삼의 제조 시 증숙 및 건조온도가 Benzo(a)pyrene 생성에 미치는 영향)

  • Jo, Eun-Jung;Kang, Shin-Jung;Kim, Ae-Jung
    • The Korean Journal of Food And Nutrition
    • /
    • v.22 no.2
    • /
    • pp.199-204
    • /
    • 2009
  • For the purpose of developing a safe & hygienic manufacturing method to acquire low levels of benzo(a)pyrene in black and red ginseng products, this study investigated the effects of steam- and dry-processing temperatures on benzo(a)pyrene production in ginseng. By the red ginseng with a fix dry-process temperature of $50^{\circ}C$ and setting the steam-process temperature between $80{\sim}120^{\circ}C$, an extremely small amount(0.1 ppb) of benzo(a)pyrene was produced, indicating there was no relationship between the steam-temperature and benzo(a)pyrene production. On the other hand, when the red and black ginseng were steamed at the fixed temperature of $100^{\circ}C$ and dried at various temperatures between $50{\sim}120^{\circ}C$, the amount of benzo(a)pyrene produced was closely connected with the dry-temperature, and increased with higher drying temperatures. Upon repeating the steam and dry process nine times, in which the steam-temperature was set at $100^{\circ}C$ and the dry-temperature at $50^{\circ}C$, higher amount of benzo(a)pyrene were produced in red and black ginseng, respectively, with increasing steam- and dry-processing time. However, the level of benzo(a)pyrene still remained extremely small(below 0.12 ppb), showing a maximum amount in the black ginseng that was steamed and dried nine times. This suggests that the fine root of ginseng may be carbonized by increasing the number of times it is steam- and dry-processed. From the above results, this study determined that the optimum temperatures for manufacturing red and black ginseng products with safe levels of benzo(a)pyrene would be a temperature between 80 and $120^{\circ}C$ for steaming and a temperature less than $50^{\circ}C$ for drying.

Studies on the Extraction Condition and Utilization of Optimum Active Ingredients and Bark Extract from Red Ginseng Residue and Mugwort Bark Extract (홍삼박 및 인진쑥박으로 부터 활성성분 극대화 추출조건 및 박 추출물의 활용성 연구)

  • Kim, Hyun Kyoung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.4
    • /
    • pp.317-324
    • /
    • 2018
  • This study was carried out to investigate the optimum conditions for extraction of ginsenoside active ingredients from red ginseng residue and mugwort bark extract produced by manufacturing alcoholic and water extract from red ginseng residue and mugwort bark extract. Extraction efficacy of ginsenoside active ingredients from extracted red ginseng residue and mugwort bark extract was higher than that before extracting. We suggests that red ginseng residue and mugwort bark extract produced by manufacturing alcholic and water extract of red ginseng and mugwort has higher potencies in the utilization of waste materials.

Conditioning of the Extraction of Acidic Polysaccharide from Red Ginseng Marc (홍삼박으로부터 산성다당체의 최적 추출 조건 분석)

  • Chang, Eun-Ju;Park, Tae-Kyu;Han, Yong-Nam;Hwang, Keum-Hee
    • Korean Journal of Pharmacognosy
    • /
    • v.38 no.1
    • /
    • pp.56-61
    • /
    • 2007
  • This study was carried out to investigate the optimum conditions for extraction of acidic polysaccharides from red ginseng marc produced by manufacturing alcoholic extract from red ginseng. Method of carbazole-sulfuric acid was applied to determine the amount of acidic polysaccharides in red ginseng marc. The amounts of acidic polysaccharides in water extract of red ginseng marc were increased with increasing extraction temperature. The contents of acidic polysaccharides were not significantly different despite of the extraction time increasing from 6 hours to 48 hours. The contents of starch in water-extract of red ginseng marc were increased with increasing extraction temperature. The starch amounts in water extract of red ginseng marc extracted for 48 hours were increased. The yields of polysaccharide precipitated from water-extract of red ginseng marc were increased with increasing extraction temperature. The hydration rate of acidic polysaccharides and starch from water-extract of red ginseng marc were decreased with increasing extraction temperature. The contents of starch were not significantly different despite of the extraction time increasing from 6 hours to 48 hours at $8^{\circ}C$. However, the rehydration rate of acidic polysaccharide for 48 hours were decreased at $8^{\circ}C$. The rehydration rate of acidic polysaccharide and starch extracted from 6 hours to 24 hours at $25^{\circ}C$ were not significantly different, but those extracted for 48 hours were increased. From the above results, we suggest that by altering the extraction conditions in red ginseng marc it is possible to develop optimum conditions for extraction that modulate the proportions of acidic polysaccharide and starch.

Studies on the Improvement in Quality of Rice Candy by adding Red Ginseng Marc. (홍삼박 첨가에 의한 엿의 품질향상에 관한 연구)

  • Lee, B.Y.;Lee, E.K.;Kim, B.G.;Kim, K.C.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.15 no.1
    • /
    • pp.53-61
    • /
    • 2013
  • To improve the quality of rice candy, We studied on manufacturng method and characteristic of rice candy by adding ratio of red ginseng marc. The results obtained were as follows: The boiled rice was added with 15 % malt extract to 1.2 times. After it was saccharified for 12 hours to 70℃, we concentrated it and made black rice candy. Then red ginseng marc was dried at 18% of moisture content and disrupted to 30 mesh below for manufacturing red ginseng marc's powder. Maintained at about 100℃, black rice candy added red ginseng marc's powder. These were mixed evenly and dried. Finally, rice candy adding red ginseng marc was completed. According to the characteristics of rice candy by adding red ginseng marc, the more amounts of red ginseng marc was increased, the less hardness and adhesiveness of rice candy was decreased. Also the brightness of the color difference was decreased. but yellowness and redness was increased. When adding red ginseng marc at 17.5%, it was evaluated to the good score in sensory evaluation.

Quality Stability of Red Ginseng Stored for Long Periods (장기저장 홍삼의 품질안정성)

  • Choi, Kang-Ju;Lee, Kwang-Seung;Ko, Sung-Ryong;Kim, Kyung-Hee
    • Korean Journal of Pharmacognosy
    • /
    • v.19 no.3
    • /
    • pp.201-207
    • /
    • 1988
  • Samples of red ginseng, which had been manufactured and packaged by the Korean Monopoly Corporation, were stored at ambient temperatures and humidities ($12{\sim}28^{\circ}$ and $55{\sim}68$ percent) for one to nine years to examine their overall quality stability. The proximate compositions, contents of 50% ethanol and water extracts of the samples and the TLC and HPLC patterns of ginsenosides in the samples remained almost unchanged in all cases. The lipids and fatty acids in the samples, which are otherwise susceptible to oxidation, were stable judged on the basis of the changes of the TLC and GLC patterns of the lipids and fatty acids. It was also found that polyunsaturated fatty acids such as linoleic(C18:2) and linolenic and(C18:3) present in the samples had been very stable during the long storage periods. It, therefore, seems that the autoxidations of the lipid and fatty acids of red ginseng were prevented by antioxidative compounds which will be progressively formed in red ginseng through non-enzymatic browning reactions during manufacturing process and long-term storage.

  • PDF