• Title/Summary/Keyword: recycled-pulp

Search Result 139, Processing Time 0.019 seconds

Evaluation of Recyclability at Varied Blending Ratios of Gable Top and Aseptic Brick Carton (상온보존팩과 냉장보존팩의 배합비율에 따른 재활용 특성 평가)

  • Seo, Jin Ho;Lee, Tai Ju;Lee, Dong Jin;Lee, Myoung Ku;Ryu, Jeong Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.6
    • /
    • pp.123-129
    • /
    • 2015
  • There are two kinds of cartons for beverage packaging, one is aseptic brick (AB) type and the other is gable top (GT). In this study, AB and GT were used as a raw material of recycled paper to investigate the recyclability at their varied blending ratios. Fiber consistency at pulping decreased as the blending ratio of AB increased. As a result, a lot of fines were generated from AB and flakes from GT increased because shear force in pulper decreased. Bulk of handsheets was more than $2.0cm^3/g$, and ISO brightness decreased as the blending ratio of AB increased. The best condition to recycle beverage cartons is to discriminate each cartons separately because of differences in the composition. However, there are problems such as the limit of the collection system and social costs. Therefore, it is assumed that the blending ratios of AB should be adjusted at less than 20% for effective recycling of beverage cartons.

Evaluation of Wet Pressing Response of Recycled OCC with Roll Press Simulator (롤프레스를 적용한 골판지 고지지료의 압착탈수특성평가)

  • Sung, Yong-Joo;Jeong, Wong-Ki;Kim, Dong-Seop;Oh, Min-Taek;Hong, Hae-Un;Seo, Yong-Bum;Im, Chang-Kuk;Gwon, Wan-Oh;Kim, Jin-Doo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.4
    • /
    • pp.85-90
    • /
    • 2012
  • Wet pressing process has great influence not only on the paper properties but also on the efficiency of total manufacturing process including energy efficiency. The slow drainage propensity of old corrugated container(OCC) might require more complicated control of wet pressing process. In this study, the change in press efficiency and in structure of wet sheet by the various condition of laboratory roll press simulator were evaluated to provide background information about wet pressing of OCC. The higher pressure and the slower machine speed resulted in higher efficiency of wet pressing but the change trends of dryness depending on the wet press pressure and machine speed were shown differently according to OCC treatment. The effects of water contents of felt on the wet press efficiency and sheet structure were also investigated. The higher contents of water in felt resulted in less removal of water generally and the crushed structure of wet sheet were appeared especially at higher pressure.

Study on the Pre-treatment for Quantitative Analysis of Mercury in Paper Packaging Materials (지류포장재에서의 수은 정량분석을 위한 전처리 방법 연구)

  • Ko, Seung-Tae;Lee, Tai-Ju;Park, Ji-Hyun;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.5
    • /
    • pp.67-73
    • /
    • 2010
  • Paper packaging materials are essential in protection and transportation of commercial or industrial products. Raw materials for packaging paper production are mainly obtained from various grades of waste paper. For this reason, the recycled fibers from waste paper would probably have possibility of containing heavy metals. This study was focused on the development of optimum pre-treatment method for the quantitative analysis of mercury. The optimum pre-treatment for open digestion system were obtained at the treatment conditions of acid combination with $HNO_3/HCl/H_2O_2$ or $HNO_3/H_2SO_4$ at $80^{\circ}C$. The optimum pre-treatment conditions in closed digestion system were determinated by the acid combination with $HNO_3/HCl/H_2O_2/HF$ in microwave at 320 W for 20 min. The recovery rate in open digestion system was 85~94% and in closed digestion system was indicated as about 100%. Therefore, the closed system is superior than the open system in pre-treatment method for the quantitative analysis of mercury, and the detected mercury contents in the sample of KOCC, AOCC and kraft sack paper were measured below 1 ppm.

Hydrolysis of Agricultural Residues and Kraft Pulps by Xylanolytic Enzymes from Alkaliphilic Bacillus sp. Strain BK

  • Kaewintajuk Kusuma;Chon Gil-Hyong;Lee Jin-Sang;Kongkiattikajorn Jirasak;Ratanakhanokchai Khanok;Kyu Khin Lay;Lee John-Hwa;Roh Min-Suk;Choi Yun-Young;Park Hyun;Lee Yun-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1255-1261
    • /
    • 2006
  • An alkaliphilic bacterium, Bacillus sp. strain BK, was found to produce extracellular cellulase-free xylanolytic enzymes with xylan-binding activity. Since the pellet-bound xylanase is eluted with 2% TEA from the pellet of the culture, they contain a xylan-binding region that is stronger than the xylan-binding xylanase of the extracellular enzyme. The xylanases had a different molecular weight and xylan-binding ability. The enzyme activity of xylanase in the extracellular fraction was 6 times higher than in the pellet-bound enzyme. Among the enzymes, xylanase had the highest enzyme activity. When Bacillus sp. strain BK was grown in pH 10.5 alkaline medium containing xylan as the sole carbon source, the bacterium produced xylanase, arabinofuranosidase, acetyl esterase, and $\beta$-xylosidase with specific activities of 1.23, 0.11, 0.06, and 0.04 unit per mg of protein, respectively. However, there was no cellulase activity detected in the crude enzyme preparation. The hydrolysis of agricultural residues and kraft pulps by the xylanolytic enzymes was examined at 50$^{\circ}C$ and pH 7.0. The rate of xylan hydrolysis in com hull was higher than those of sugarcane bagasse, rice straw, com cop, rice husk, and rice bran. In contrast, the rate of xylan hydrolysis in sugarcane pulp was 2.01 and 3.52 times higher than those of eucalyptus and pine pulp, respectively. In conclusion, this enzyme can be used to hydrolyze xylan in agricultural residues and kraft pulps to breach and regenerate paper from recycled environmental resources.

Cushioning Performance Analysis of Cushioning Materials for Vibration and Impact Condition (진동 및 충격조건에 대한 완충재별 완충성능 분석)

  • Oh, Jae-Young
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • The impact absorption materials made of synthetic organic chemical product like Expanded Polystyrene(EPS), Expanded Polyethylene(EPE), Expanded Polyurethane(EPU), etc. have been used with general packaging material until the present. But nowadays, the use of these materials is intended to be decreased and to be recycled in connection with environmental pollution. In addition, it has been tried to substitute these materials with non-pollution materials(natural materials) like pulp mould, paper protectors, etc. At the same time, it is required to evaluate and analyze these cushioning materials for cushioning properties based on impact and vibration, in order to make an efficiency on the overall packaging system because they are generally being used by a random choice regardless of the properties of contents and cushioning materials. Therefore, this study provides analyzed data on cushioning properties of various cushioning materials against impact and vibration, and is intended to provide more efficient model for packaging system by minimizing their using amount through choosing an optimal cushioning material as well as intended to lead to the use of nonpollution materials in case these cushioning materials have same cushioning properties.

  • PDF

Paper Recycling of South Korea and its Effects on Greenhouse Gas Emission Reduction and Forest Conservation

  • Cha, Junhee;YOUN, Yeo-Chang
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.5
    • /
    • pp.530-539
    • /
    • 2008
  • The study evaluates the greenhouse gas (GHG) reduction potential of paper recycling by paper industry in South Korea and determines the positive impact on global warming by conserving the world's forests through decreasing pulp wood use. South Korea is one of the leading countries in the world thai recycle papers with a collection rate of 71.8 percent and a recycling rate of 74.4 percent in 2005. Greenhouse gas emission reduction potential in terms of carbon dioxide ($CO_2$) equivalent from paper recycling was assessed scientifically by the use of Life Cycle Assessment (LCA). Three types of papers including newsprint, container-board, and white-board were used for assessment in this study. Results of this study indicate that $CO_2$ emission reduction potential of recycling paper varies according to its types and recycling rates. Greenhouse gas emission reduction factor of 0.74869 $tCO_2$ per ton of recycled paper was derived from this study. In applying this factor. it was found out that the South Korean paper industry reduced GHG emission of around 6,364,550 $tCO_2$ by recycling paper in 2005. With this. the country's paper industry could claim that by recycling in thai particular year. approximately $23.8million\;m^3$ of woods were not harvested and thus 212,500 ha of world's forests were estimated to be saved in that particular year. Overall. it could be concluded that the Korean paper industry was able to reduce $CO_2$ emission and was able to conserve world's forests by its high rates of paper recycling.

Preparation of Aluminum Hydroxide by Recycling of Aluminum Dross (알루미늄드로스로부터 수산화알루미늄 제조)

  • 박형규;이호인;김준수
    • Resources Recycling
    • /
    • v.10 no.5
    • /
    • pp.8-15
    • /
    • 2001
  • Aluminum dross should be recycled in consideration of characteristics of the dross and its reutilization after processing. In this study, aluminum dross generated in the domestic secondary aluminum industry was processed to use it as raw material for producing aluminum hydroxide. Sample dross was classified according to its size. The dross smaller than $850\mu$m was leached with sodium hydroxide solution to extract the remaining aluminum from the dross into the solution, and then aluminum hydroxide precipitate was recovered (rom the leach liquor. Purity of the obtained aluminum hydroxide was above 98% and size of the sample was in range of $\3~39mu$m. Recovery of aluminum hydroxide precipitate was highest on condition that A/C ratio of the solution was 0.5 and pulp density was 14~16% at the leaching step. From the result, it was suggested that this process could be applicable to recycling of aluminum dross.

  • PDF

Recycling of rayon industry effluent for the recovery and separation of Zn/Ca using Thiophosphinic extractant

  • Jha, M.K.;Kumar, V.;Bagchi, D.;Singh, R.J.;Lee, Jae-Chun
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2006.05a
    • /
    • pp.78-85
    • /
    • 2006
  • In textile industries, waste effluent containing zinc is generated during the manufacture of rayon yarn from the wood pulp or cotton linters. Due to the strict environmental regulations and the presence of toxic metallic and other constituents, the discharge of industrial effluents in the sewage or disposal of solid sludge as landfill is restricted. Before recycling of zinc as zinc sulphate solution to the spinning-bath of the rayon manufacturing plant the zinc sulphate solution must be free from calcium, which is deleterious to the process as gypsum precipitates with the increase in concentration and forms scale in the bath. In the present work an attempt has been made to develop a process following solvent extraction technique using thiophosphinic extractants, Cyanex 272 and 302 modified with isodecanol and diluted in kerosene to recover zinc from rayon effluent. Various process parameters viz. extraction of zinc from different concentration of solution, distribution ratio, selective extraction, O/A ratio on extraction and stripping from the loaded organic, complex formation in the organic phase etc. have been studied to see the feasibility of the process. The extractant Cyanex 302 has been found selective for the recovery of 99.99% of zinc from the effluent above equilibrium pH 3.4 maintaining the O/A ratio of 1/30 leaving all the calcium in the raffinate. It selectively extracted zinc in the form of complex $[R_{2}Zn.3RH]_{org}$ and retained all the calcium in the aqueous raffinate. The zinc from the loaded Cyanex 302 can be stripped with 10% sulphuric acid at even O/A ratio of 10 without affecting the stripping efficiency. The stripped solution thus obtained could be recycled in the spinning bath of the rayon plant. The raffinate obtained after the recovery of zinc could be disposed safely without affacting environment.

  • PDF

Localization development of environmentally-friendly high-functional outsole material using leather scrap (피혁폐기물을 활용한 친환경 고기능성 아웃솔 소재의 국산화 개발방안)

  • Sang, Jeong Seon;Park, Myung-Ja
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.23 no.2
    • /
    • pp.165-176
    • /
    • 2021
  • To solve environmental problems, research and efforts are required to reduce leather waste that is generated in large quantities during the leather manufacturing process. Leatherboard is a plate-like material that is made by crushing leather waste, such as trimming or shaving scraps and mixing fibers, pulp, rubber, and adhesives. The aim of this study is to provide basic data on the localization of leatherboard manufacturing technology for outsoles, which are increasingly in demand due to their excellent performance and price competitiveness. Interviews with experts and related organizations were conducted to investigate the related global technology trends. Also, the performance of three products that can be used as reference materials were evaluated and compared. As part of the research and efforts to reduce the amount of leather waste generated, high-performance materials using leather waste were developed and commercialized by major western companies. In Korea, various efforts have been made since 2000, and some companies have produced leatherboard for interior uses. However, the amount of waste recycled relative to that generated is not large due to the limited demand. Natural leather soles perform better than leatherboard soles in all evaluation aspects. In the case of leatherboard, performance varied by manufacturer. German products showed flexibility resistance and dimensional stability, thereby meeting performance requirements. However, abrasion resistance and cleavage resistance were slightly below the required performance standards, and research and development is needed to improve performance in those areas. Currently, it is impossible to evaluate the performance of domestic products due to underdevelopment. However, if the development of process technology continues based on the performance evaluation results of the best leatherboard in the shoe industry, materials for outsoles will be able to be produced domestically with prices competitiveness while realizing natural leather materials performance to some extent.