• Title/Summary/Keyword: recycled wood fiber

Search Result 24, Processing Time 0.018 seconds

Application of In-situ CaCO3 Formation Method for Better Utilization of Recycled Fibers (2) - Comparison with CaCO3 Addition Method and Effects of Temperature - (고지의 효과적인 활용을 위한 in-situ 탄산칼슘 부착방식의 연구(2) - 탄산칼슘 첨가방식과 비교 및 반응온도에 따른 변화 -)

  • Lee, Min Woo;Lee, Young Ho;Jung, Jae Kwon;Seo, Yung Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.5
    • /
    • pp.27-34
    • /
    • 2014
  • In-situ $CaCO_3$ formation onto recycled wood pulp was studied to improve optical properties and ash attachment to the fiber furnish in papermaking. We controlled initial reaction temperature of in-situ $CaCO_3$ formation method from $30^{\circ}C$ to $50^{\circ}C$. It was found that the attachment of newly formed $CaCO_3$ to recycled fibers, old newspaper (ONP) in this case, was stronger than that of ground calcium carbonate (GCC, mean dia. $2.4{\mu}m$) addition case, but was not much different among those formed at different temperature. Morphologies of newly formed $CaCO_3$ were changed according to the reaction temperature. More aragonite shape was seen at higher temperature. In-situ $CaCO_3$ formation increased brightness and lowered ERIC value of ONP sheet greatly at the same level of ash contents when compared to GCC addition method, but gave equivalent ERIC and brightness when compared to those of the precipitated calcium carbonate (PCC) addition method. However, tensile strength of the handsheets of the in-situ $CaCO_3$ formation method were much greater than those of the PCC addition method.

A Study of Modular Dome Structural Modeling with Highly Filled Extrusion Wood-Plastic Composite Member (고충진 압출성형 합성목재를 이용한 모듈러 돔의 구조모델링에 관한 연구)

  • Shon, Su-Deok;Kwak, Eui-Shin;Lee, Seung-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.76-83
    • /
    • 2015
  • This paper aims at developing an environmentally friendly modular dome structure system with highly filled extrusion wood-plastic composite (WPC) member, and manufacturing a real-size specimen by modularizing members and nodes. The member used in the model is the WPC member with 70% wooden fiber contests, which is higher then previous WPC one. Its members and nodes are modularized by analyzing geometric characteristics of icosahedral-based geodetic dome. Applicapability of the 6ea prototype nodes and 3ea prototype members to the modular dome is examined with the results of the modulaization and the making process for the real-size specimen. Besides, from the analysis results, the lowest buckling mode is expected to be a nodal buckling on a node near the boundary.

An Overview of Biopulping Research: Discovery and Engineering

  • Scott, Gary M.;Akhtar, Masood;Lentz, Michael J.;Horn, Eric;Swaney, Ross E.;Kirk, T.Kent
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.4
    • /
    • pp.18-27
    • /
    • 1998
  • Biopulping is defined as the treatment of wood chips with lignin-degrading fungi prior to pulping. Fungal pretreatment prior to mechanical pulping reduces electrical energy requirements during refining or increases mill throughput, improves paper strength, reduces the pitch content, and reduces the environmental impact of pulping. Our recent work involved scaling up the biopulping process towards the industrial level, investigating both the engineering and economic feasibility. We envision the process to be done in either a chip-pile or silo-based system for which several factors need to be considered: the degree of decontamination, a hospitable environment for the fungus, and the overall process economics. Currently, treatment of the chips with low-pressure steam is sufficient for decontamination and a simple, forced ventilation system maintains the proper temperature, humidity, and moisture conditions, thus promoting uniform growth of the fungus. The pilot-scale trial resulted in the successful treatment of 4 tons of wood chips (dry weight basis) with results comparable to those on a laboratory. Larger, 40-ton trials were also successful, with energy savings and paper properties comparable with the laboratory scale. The overall economics of the process also look very favorable and can result in significant annual savings to the mill. Although the current research has focused on biopulping for mechanical pulping, it is also beneficial for sulfite chemical pulping and some applications to recycled fiber have been investigated.

  • PDF

The Evaluation of the Application of Modified Wood Powder Spacers to Liner Board Mill Trials (개질처리된 목질계 스페이서의 산업용지 생산현장 적용평가)

  • Seo, Yung Bum;Yoon, Doh-Hyun;Sung, Yong Joo;Gwon, Wan-Oh;Kim, Jin-doo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.5
    • /
    • pp.98-103
    • /
    • 2015
  • The reduction of the energy consumption in papermaking process become more important issue because of the regulation of green house gas (GHG) emission. Since more than half of energy for papermaking process is consumed during drying process, the increase of the drying efficiency would be very important solution for saving energy and reduction of GHG emission. The improvement of drying efficiency could be very difficult for the liner board mill because the liner board are usually made of recycled paper, OCC (old corrugated container). The short fiber and fines originated the OCC lead to compact sheet structure and delay the water flow out during wet pressing process and drying process. The application of lignocellulose spacer could provide more loose wet sheet structure and result in the higher drainage rate and the improved drying efficiency. In this study, the effects of the application of lignocellulose spacer to the liner board mill were evaluated based on the mill trial. In order to overcome the common disadvantage of the spacer, the loss of strength properties, the spacer was pretreated with amphoteric polyelectrolyte during mill trial. The results showed the application of pretreated spacer improved the drying efficiency by reducing steam consumption. And the loss in the strength properties by the spacer could be supplemented by the pretreatment.