• Title/Summary/Keyword: recycled materials

Search Result 914, Processing Time 0.032 seconds

Manufacture of Dyed Recycling Wood Fiber Using Waste MDF (폐MDF를 이용한 염색재생섬유 제조)

  • Ju, Seong-Gyeong;Roh, JeongKwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.297-307
    • /
    • 2017
  • This research was performed to use recycling wood fiber from waste MDF as raw materials for manufacturing of interior decorative accessories. Virgin fiber of Pinus rigida for manufacturing MDF and recycling fiber from manufactured MDF with virgin fiber were dyed by using reactive dyes (Bis-monochlorotriazine and Vinyl sulfone type), vat dyes (Anthraquinone type), direct dyes (Diazo type) such as red, yellow and blue, and natural dyes using gardenia or sappan wood, and they were examined to evaluate their dyeing properties and sunlight fastness. The hue of virgin fiber and recycling fiber were 4.2YR, and 4.4YR, respectively, which showed red-yellowish color. The recycling fiber looked a little darker than the virgin fiber, where $L^*$ values of the recycling fiber showed a little lower. Reactive, vat and direct dyes dyed well both the virgin and recycling fibers. The recycling fiber showed a little higher values of colour yield and a little lower in $L^*$, but it seemed that there was no significant difference. The Hue values of the recycling fiber and the virgin fiber dyed with sappan wood were 4.4YR and 4.0YR, showing no difference between/after dyeing. However the Hue values of the recycling fiber and the virgin fiber dyed with gardenia were 7.4YR and 6.9YR, respectively. Those values were much higher than the values of the fibers dyed with other chemical dyes. But the fibers dyed with gardenia showed poor sunlight fastness.

Eco-Friendly Backfill Materials with Bottom Ash (바톰애시를 이용한 환경친화적 뒤채움재)

  • Lee, Kwan-Ho;Kim, Seong-Kyum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1385-1390
    • /
    • 2012
  • Couple of laboratory for controlled low strength materials with bottom ash and recycled in-situ soil have been carried out. The optimum mix ratios for 4 cases with flowability and unconfined compressive strength were determined. The optimim mixing ratios were 25 to 45% of insitu soil, 30% of bottom ash, 10 to 20% of fly ash, 0 to 3% of crumb rubber, 3% of cement and 22% of water. Each mixture was satisfied the standard specification, minimum 20cm of flowability and 127 kPa of unconfined compressive strength. Two different curling methods, at room temperature and wet condition, were adopted. The average secant modulus(E50) was 0.07 to 0.08 * $q_u$. The compressive strength at wet condition showed 10% larger than at room temperature. The range of internal friction angle and cohesion for mixtures were 36.5o to 46.6o and 49.1 to 180 kPa, respectively. The mixture with crumb rubber(case 4) showed higher choesion and lower internal friction angle than the others. The pH of all the mixtures was over 12 which is strong alkine.

Study on the Manufacturing of Leather-like Material using Leather and Textile Scrap (피혁 및 섬유 제조공정 폐기물을 활용한 피혁 대체 소재의 제조에 관한 연구)

  • Kim, Won-Ju;Ko, Jae-Yong;Heo, Jong-Soom
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.4
    • /
    • pp.93-99
    • /
    • 2000
  • Treatment of shaving scrap, a chrome containing solid scrap generated by leather manufacturing process, has been so far depended on mainly incineration, soil landfill and ocean dumping, which give bad impact on environment and cause pollution. Shaving scrap generates from the mechanical work for controlling the final thickness of leather and its main components are collagen protein and pan of chromium compound. For the purpose of reusing this leather waste as resources, researches in connection with collagen fiber recovery, gelable protein recovery and liquid fertilizer is being speedily progressed. In the experiment, shaving scrap went through wet pulverizing treatment by physical and chemical methods. Then, making the leather sheet evenly, it is mixed with natural latex and every kind of binding materials in the container, and the mixtures were passed through experimental hydraulic press machine and applied to Fourdrinier machine respectively. Lastly, a test for fading out physical strength and properties of multiple-purpose of leather-like material was performed on a continuous leather sheet prepared by the experiment. In result, the physical strength and properties of leather-like material showed noticeable differences according to mixing ratio of binding materials, beating methods and the Ends of binding materials selected, and generally tear strength was the weakest property among others. Also, by the pilot scale experiment in sequence, it was possible to manufacture recycled goods made of soft and hard types of leather-like material with various performances.

  • PDF

Performance Evaluation of Underground Pipe with In-Situ Recycled Controlled Low Strength Materials (현장발생토사 재활용 유동성채움재를 이용한 지하매설관의 거동평가)

  • Lee Kwan-Ho;Song Chang-Seob
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.1-12
    • /
    • 2006
  • An existing Steel pipe, Cast iron pipe and Concrete pipe is can not escaped from aging, specially Metal tube is causing many problems that the quality of water worse is concerned about many rust and mike efficient use of preservation of water. The use of Glassfiber Reinforced Plastic Pipe(GRP PIPE) should be one of the possible scheme to get over these problems. The GRP PIPE has an excellent resistance power and the life is lasting from 50 to 100 years roughly. It's to be useful as a result of high durability and a good construction work also it is a light weight therefore can be expected to short the time of construction and man power. In this research, to executed the small-scaled model test, in-situ model test using CLSM of in-situ soil and to evaluated the stress - strain of the pipe also try to estimated how useful is. From the model test in laboratory, the vertical and horizontal deformation of the GRP PIPE measured in six instance using 200mm and 300mm in diameters. The value of experimentation, theory, analysis got the same results of the test, but the vertical and horizontal deformation gauged in small and the earth pressure was almost zero using CLSM of in-situ soil..

  • PDF

Failure Mode and Effect Analysis for Remanufacturing of the Old Extrusion Press (노후 압출기의 재제조를 위한 고장모드 영향분석)

  • Jung, Hang-Chul;Yun, Sang-Min;Oh, Sang-Ho;Baeg, Chang Hyun;Kong, Man-Sik
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.297-305
    • /
    • 2021
  • In the domestic aluminum industry, the extrusion process is a major process accounting for more than 40% of the total production. However, most domestic aluminum extrusion companies produce aluminum using old equipment that is more than 30 years old. Extrusion press is when the equipment is not replaced before the wear and breakage of major parts occur, reducing productivity and increasing the defect rate compared to new equipment. The old extrusion press often loses part drawings, so it is difficult to repair them properly on-site and to remanufacture them due to the lack of technical skills for maintenance. Therefore, a systematic remanufacturing plan must be designed from dismantling the equipment. In this study, remanufacturing FMEA was devised to remanufacture old extrusion press. The risk priority was analyzed by considering the degree of damage to the recycled parts, the cycle due to breakage/damage during the extrusion process, and the value of recycling resources due to remanufacturing. To standardize the remanufacturing process, remanufactured FMEA was performed through part analysis according to the structural analysis of the extrusion press. In addition, remanufacturing priorities were selected for each part, while remanufacturing itself was studied for efficiency of resource circulation and product quality stabilization.

Safety Factor of Rigid Sewer Pipe by Different Types of Foundation and Backfill (기초형식 및 뒤채움재 종류별 강성관용 하수관거의 안전율)

  • Lee, Kwan-Ho;Kim, Seong-Kyum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.606-612
    • /
    • 2019
  • The main causes of subsidence and sinkholes in the lower part of urban roads are sewage line foundation and inadequate compaction of backfill material. This leads to many problems, such as the breakage of joints in sewer pipes, poor connection, pipe breakage, and cracks. To solve this problem, the support factor related to the sewer foundation and the safety factor according to the excavation depth were evaluated. For the foundation of rigidity tolerance, crushed stone foundation, and abandoned concrete foundation, a recently newly developed site assembly-type lightweight plastic foundation were used. Backfill materials were applied on site (sandy soil and clayey soil) and fluid backfill was recycled onsite. To evaluate the depth of excavation and the safety factor of each sewer pipe foundation, the design load considering the load factor and the support factor was evaluated. The support coefficients were 0.377 for a crushed stone foundation, 0.243 and 0.220 for an abandoned concrete foundation ($180^{\circ}$ and $120^{\circ}$), and 0.231 for a lightweight plastic foundation and fluid backfill. Overall, the safety factor was low when using the crushed stone foundation, and the safety rate was the highest when the foreclosed concrete foundation ($180^{\circ}$) was used. In addition, when the combination of lightweight plastic and fluid backfill materials was used, the safety factor was higher than that of abandoned concrete foundation ($120^{\circ}$), which means that the newly developed lightweight plastic foundation can be used as another alternative base of a steel pipe.

A Fundamental Study on Shearing/Bonding Characteristics of Interface Between Rock Mass and Backfills in Mine Openings (폐광산 채움재와 암반 경계부의 전단 및 접합특성에 관한 기초 연구)

  • Kim, Byung-Ryeol;Lee, Hyeon-woo;Kim, Young-Jin;Cho, Kye-Hong;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.623-646
    • /
    • 2021
  • As the demand for electric power increases with acceleration of electrification at home and abroad, the needs for coal-fired electrical power plant are accordingly increased. However, these coal-fired electrical power plants induce also many environmental problems such as increase of air pollutants, increase of possibility of land contamination by reclamation of coal ash, even though these power plants have a good economical efficiency. In case of a by-product of coal-fired electrical power plants, only 70% of them are recycled and the remaining 30% of by-product are fully buried in surrounding ground. Consequently, this study deals with coal ash backfilling mechanism in abandoned mine openings for the purposes of increasing the coal ash recycling rate as well as securing the mine area stability. In order to analyze the backfill and ground reinforcement by interaction between rock mass and backfills, the copying samples of discontinuous surface with different roughnesses were produced for bond strength tests and direct shear tests. And statistical analysis was also conducted to decide the characteristics of bond and shear behavior with joint roughness and their curing day. Numerical simulations were also analyzed for examining the effect of interface behavior on ground stability.

Development of Magnetically Separable Immobilized Trypsin (자석에 의해 분리가 가능한 고정화 Trypsin 개발)

  • Ryu, Ji-Soon;Lee, Jung-Heon
    • KSBB Journal
    • /
    • v.23 no.4
    • /
    • pp.350-354
    • /
    • 2008
  • Magnetically separable immobilized trypsin was developed and their biocatalytic activity was evaluated for the different immobilization media. The activity, recyclability, pH effect, and stability of immobilized enzymes were evaluated for the different supporting media. The biocatalytic activity of immobilized trypsin was highest with magnetically separable polyaniline (PAMP), and Vm and Km of PAMP were 0.169 mM/min and 0.263 mM respectively. With increasedpH, the biocatalytic activity increased for all supporting materials used. Immobilized enzymes were recycled and recycle activities were over 90% of their original activity after ten times reuse. The operational stabilities of enzymes were greatly improved with enzyme immobilization.

Determination of Heavy Metal Contents in Various Packaging Boards (지류 포장재 종류에 따른 중금속 함량 측정)

  • Kim, Jin-Woo;Seo, Joo-Hwan;Youn, Hye-Jung;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.2
    • /
    • pp.55-63
    • /
    • 2009
  • This study was performed to evaluate the heavy metal contents in various packaging board. Domestic and foreign OCC (old corrugated containers) and old duplex boards were used as raw materials. Tests were made for the printed and unprinted parts of the sample. Heavy metal contents of old food packaging boards made from virgin pulp fibers were also evaluated. The contents of heavy metals including lead (Pb), cadmium (Cd), barium (Ba), arsenic (As), antimony (Sb), selenium (Se), and mercury (Hg) were determined using ICP-AES (Inductively Coupled Plasma - Atomic Emission Spectrometer), and CV-AAS (Cold vapor-atomic absorption spectrometer) after digesting the samples in a microwave oven. The contents of heavy metals contained in domestic packaging board were higher than those in overseas samples, and OCC showed higher contents of heavy metals than old duplex boards. Printed parts gave greater heavy metal contents than unprinted parts. Results indicate that recycling of paper and paperboard products increases the heavy metal contamination of the paper packaging products and this derives mostly from the heavy metals contained in printing inks. Recycling processes that decrease heavy metals in recycled fibers and new printing inks that contains less heavy metals should be developed to solve the problem associated with the heavy metals in packaging paper products.

Recycling and Applications of Titanium Alloy Scraps (티타늄 합금 스크랩의 재활용 및 응용 기술 현황)

  • Oh, Jung-Min;Kwon, Hanjung;Lim, Jae-Won
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.75-83
    • /
    • 2013
  • In the present paper, we review recycling and applications of titanium binary alloy scraps. The recycling techniques are to successfully prepare low oxygen content ingots using hydrogen plasma arc melting (HPAM) and to produce low oxygen content titanium alloy powders by Hydrogenation-dehydrogenation (HDH) and Deoxidation in solid state (DOSS) process. In addition, as applications of the titanium binary alloy scraps, Ti based solid-solution carbide powders, which would be used for producing Ti based solid-solution cermets with high toughness, were prepared using the titanium binary alloy scraps. These results confirmed that the titanium alloy scraps could be recycled and refined using the HPAM. The resulting oxygen content of the titanium alloy powders were below 1,000 ppm after powderizing. Finally, we had confirmed that the refined titanium alloy powders were able to be utilized as raw materials for preparing the toughened cermets.