• Title/Summary/Keyword: recycled materials

Search Result 914, Processing Time 0.03 seconds

An Analysis of Hydrophobic Characteristics of Concrete Surfaces by Antifouling Coating Agent using Cellulose Nonofiber and Alkyl Ketene Dimer (셀룰로오스 나노 섬유와 AKD를 활용한 방오 코팅제에 의한 콘크리트 표면의 소수 특성 분석)

  • Nag-Seop Jang;Chi-Hoon Noh;Hongseob Oh
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.2
    • /
    • pp.120-129
    • /
    • 2023
  • Marine structures are subject to damage not only from sea salt but also from the adhesion of marine microorganisms and suspended particles, which cause additional damages. In order to prevent this, periodic coating is employed in the case of vessels to maintain the necessary performance. However, it is true that periodic coating is difficult for concrete or steel support structures, and there is a risk of marine environmental pollution. In this study, authors developed an anti-fouling coating agent using eco-friendly materials that possess hydrophilic cellulose nanofibers and AKD(alkyl ketene dimer). To achieve a homogeneous mixture, the content of cellulose nanofibers was fixed at 1 %, and AKD, distilled water, and waste glass were mixed using a digital mixer and homogenizer. The contact angle of the prepared coated surface was observed to be over 130°, indicating sufficient performance even in a water droplet flow test with a 15° slope, suggesting self-cleaning capability. Furthermore, through the analysis of viscosity characteristics at different temperatures, it was confirmed that the application is feasible at room temperature. Microstructure analysis also verified that the coating agent is uniformly applied to the concrete surface.

The Performance Evaluation of In-situ Carbonation Mortar Using Gaseous CO2 (기체 CO2를 사용한 In-situ 탄산화 모르타르 성능평가)

  • Changgun Park;Deukhyun Ryu;Seongwoo Choi;Kwangwoo Wi;Seungmin Lim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.226-233
    • /
    • 2023
  • In this study, two phases were conducted to investigate the direct injection of gaseous CO2 into cement mortar. The aim was to advance carbon capture, utilization, and storage (CCUS) technology by harnessing industrial waste CO2 from the domestic ready-mixed concrete industry. In the first phase, the factors influencing the physical properties of cement mortar when using gaseous CO2 were identified. This included a review of materials to achieve physical properties comparable to a reference formulation. As a result of this phase, it was confirmed that traditional approaches, such as adjusting the water-to-cement ratio, had limitations in achieving the desired physical properties. Consequently, the second phase focused on the optimization of CO2-injected mortar. This involved studying the CO2 application and mixing method for cement mortar. Changes in properties were observed when gaseous CO2 was injected into the mortar. The optimal injection quantity and time to enhance the compressive strength of mortar were determinded. As a result, this study indicated that an extra mixing time exceeding 120 seconds was necessary, compared to conventional mortar. The optimal CO2 injection rate was identified as 0.1 to 0.2 % by weight of cement, taking both flowability and compressive strength performance into account. Increasing the CO2 injection time did not further enhance strength. For this approach to be employed as a CCUS technology, additional studies are required, including a microstructural analysis evaluating the amount of immobilized CO2.

Experimental Study on the Manufacturing and Waterproofing Properties of Self-healing Concrete Waterproofing Agent Using Microcapsules (마이크로캡슐을 활용한 자기치유 구체방수제의 제조 및 방수특성에 관한 실험적 연구)

  • Yun-Wang Choi;Jae-Heun Lee;Neung-Won Yang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.289-298
    • /
    • 2023
  • In this study, the development of a self-healing concrete waterproofing agent was examined, focusing on its manufacturing and waterproofing properties. The optimal ratio using microcapsules for the concrete waterproofing agent was determined through assessments of flow, compressive strength, and permeability conducted during the mortar stage. These findings aimed to provide fundamental data for evaluating the self-healing properties of the concrete waterproofing agent designed for use in concrete structures. The self-healing concrete waterproofing agent was comprised of three types of inorganic materials commonly used for repair purposes. From experimental results, a composition ratio with a high potassium silicate content, referred to as SIM-2, was found suitable. A surfactant mixing ratio of 0.03 % was identified to enhance the dispersibility of the concrete waterproofing agent, while a mixing ratio of 0.2 % distilled water was deemed suitable for viscosity adjustment. For the magnetic self-healing concrete waterproofing agent's healing agent, using microcapsules in the range of 0.5 % to 0.7 % met the KS F 4949 and KS F 4926 standards.

Basic Characteristics and Field Demonstration Test of Ground Granulated Blast Furnace Slag using CO2 Fixed Desulfurized Gypsum (CO2 고정 탈황석고를 사용한 고로슬래그 미분말의 특성 및 현장실증)

  • Chang-Woo Lee;Hoon-Guk Choi;Sung-Kwan Seo;Jong-Ho Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.3
    • /
    • pp.281-289
    • /
    • 2024
  • In this study, CO2-immobilized desulfurized gypsum(CFDG) was applied to ground granulated blast furnace slag to examine the basic properties of mortar and concrete, and to evaluate its responsiveness through field demonstration test. CFDG had a relatively circular composition compared to desulfurized gypsum(DG), and its main components were CaO 47.6 % and SO3 22.1 %. As a result of mortar and concrete tests, the flow tended to increase and the compressive strength was at the same level. In addition, the target properties of concrete for application to farm roads, which were a slump of 120±25 mm and a compressive strength of 24 MPa, were satisfied with a slump of 135 mm and a compressive strength of 42.1 MPa at 28 days. In February 2024, an on-site demonstration of a farm road was conducted in Seongmun-myeon, Dangjin-si, and as a result of reviewing the compressive strength according to curing conditions, the physical properties and durability of unhardened concrete, the target results were satisfied, expanding the use of CFDG by applying fine powder of blast furnace slag and carbon reduction can be expected.

The Bond Slip Behavior of High Strength and Ultra Lightweight Concrete According to Compressive Strength and Unit Weight (압축강도 및 단위중량에 따른 고강도 초경량 콘크리트의 부착-슬립 거동)

  • Dong-Bum Jo;Jun-Hwan Oh;Ju-Hyun Cheon;Sung-Won Yoo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.3
    • /
    • pp.254-262
    • /
    • 2024
  • The demand for high strength and ultra-lightweight materials to incorporate the advanced technology of nanomaterials into the lengthening of structures is continuously increasing. Therefore, based on existing research results and numerous mixing trials, we derived a mix of high strength and ultra-light concrete of a compressive strength of 100 MPa with a unit weight of 18 kN/m3 and a compr essive str ength of 80 MPa with a unit weight of 16 kN/m3 and evaluated their per for mance. In this paper, 108 specimens corresponding to high strength and ultra-lightweight concrete with a compressive strength of 100 MPa under a unit weight of 18 kN/m3, and a compressive strength of 80 MPa under a unit weight of 16 kN/m3 were manufactured, and the bond characteristics were identified by performing a directly tensile tests, and the bond characteristics were evaluated by comparing them with the experimental results and the current design criteria. It was judged that the bond strength calculation formula of ACI-408R and the experimental results were not accurately reflected, so an bond stress equation based on ACI-408R was proposed. The result of the proposed equation was that the deviation was somewhat reduced. In addition, the results of calculating the CEB-FIP model and the modified CMR model using statistical analysis showed slight differences from the experimental results, but considering that the bond behavior is a local behavior, the proposed model appears to explain the bond behavior of high strength and ultra-light concrete as a whole.

Durability assessments of limestone mortars containing polypropylene fibres waste

  • Bendjillali, Khadra;Boulekbache, Bensaid;Chemrouk, Mohamed
    • Advances in concrete construction
    • /
    • v.10 no.2
    • /
    • pp.171-183
    • /
    • 2020
  • The main objective of this study is the assessment of the ability of limestone mortars to resist to different chemical attacks. The ability of polypropylene (PP) fibres waste used as reinforcement of these concrete materials to enhance their durability is also studied. Crushed sand 0/2 mm which is a fine limestone residue obtained by the crushing of natural rocks in aggregates industry is used for the fabrication of the mortar. The fibres used, which are obtained from the waste of domestic plastic sweeps' fabrication, have a length of 20 mm and a diameter ranging between 0.38 and 0.51 mm. Two weight fibres contents are used, 0.5 and 1%. The durability tests carried out in this investigation included the water absorption by capillarity, the mass variation, the flexural and the compressive strengths of the mortar specimens immersed for 366 days in 5% sodium chloride, 5% magnesium sulphate and 5% sulphuric acid solutions. A mineralogical analysis by X-ray diffraction (XRD) and a visual inspection are used for a better examination of the quality of tested mortars and for better interpretation of their behaviour in different solutions. The results indicate that the reinforcement of limestone mortar by PP fibres waste is an excellent solution to improve its chemical resistance and durability. Moreover, the presence of PP fibres waste does not affect significantly the water absorption by capillarity of mortar nether its mass variation, when exposed to chloride and sulphate solutions. While in sulphuric acid, the mass loss is higher with the presence of PP fibres waste, especially after an exposure of 180 days. The results reveal that these fibres have a considerable effect of the flexural and the compressive behaviour of mortar especially in acid solution, where a reduction of strength loss is observed. The mineralogical analysis confirms the good behaviour of mortar immersed in sulphate and chloride solutions; and shows that more gypsum is formed in mortar exposed to acid environment causing its rapid degradation. The visual observation reveals that only samples exposed to acid attack during 366 days have showed a surface damage extending over a depth of approximately 300 ㎛.

A Fundamental Study on the Potential of Alkali-Aggregate Reaction according to KS F 2545 and ASTM C 1260 Test Methods (KS F 2545와 ASTM C 1260 시험법에 따른 알칼리골재 잠재가능성에 관한 연구)

  • Baek, Chul-Seoung;Seo, Jun-Hyung;Kim, Young-Jin;Cho, Kye-Hong;Kim, Kun-Ki;Lee, Jin-Young
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.18-27
    • /
    • 2020
  • Chemical experiment KS F 2545 and Physical experiment ASTM C 1260 has been accomplished to estimate the potential of alkali aggregate. Used for testing aggregate samples are forest aggregate and recycled aggregate which collected in Gangwon province Samcheok and Pyeongchang, Jeollabuk province Gimje and Kochang, and Gyeongsangnam province Goryeong. As the results of chemical experiment confirmed that if silicate rock and carbonate rock are mixed, reduction in alkalinity is increase. So it has been identified that case makes a disturb at the result of alkali aggregate reaction. In 9 out of the 62 aggregate samples check dissolved silica exceeding 100 mmol/ℓ. and mortar bar length increase rate confirmed that 5 of 9 chemical method aggregates were 0.1~0.2% and 2 aggregates were 0.2%. As a result of the alkaline aggregate reaction test using the chemical method and the mortar bar method, the aggregates showing alkali aggregate reaction are sandstone and tuff aggregates. Therefore, Alkali aggregate reaction tests are required to use clastic sedimentary rocks and volcanic pyroclastic rocks aggregates.

Strength and Earth Pressure Characteristics of Industrial Disposal Flowable Filling Materials Utilizing Backfiller (뒤채움재로 사용된 산업폐기물 유동화 처리토의 강도 및 토압특성)

  • Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.3
    • /
    • pp.5-13
    • /
    • 2021
  • Due to population growth and industrial development, the amount of industrial waste is increasing every year. In particular, in a thermal power plant using finely divided coal, a large amount of coal ash is generated after combustion of the coal. Among them, fly ash is recycled as a raw material for cement production and concrete admixture, but about 20% is not utilized and is landfilled. Due to the continuous reclamation of such a large amount of coal ash, it is required to find a correct treatment and recycling plan for the coal ash due to problems of saturation of the landfill site and environmental damage such as soil and water pollution. In recent years, the use of a fluid embankment material that can exhibit an appropriate strength without requiring a compaction operation is increasing. The fluid embankment material is a stable treated soil formed by mixing solidifying materials such as water and cement with soil, which is the main material, and has high fluidity before hardening, so compaction work is not required. In addition, after hardening, it is used for backfilling or filling in places where compaction is difficult because higher strength and earth pressure reduction effect can be obtained compared to general soil. In this study, the possibility of use of fluidized soil using high water content cohesive soil and coal ash is considered. And it is intended to examine the flow characteristics, strength, and bearing capacity characteristics of the material, and to investigate the effect of reducing the earth pressure when applied to an underground burial.

Preparation and Characterization Study of PET Nanofiber-reinforced PEI Membrane, Investigation of the Application of Organic Solvent Nanofiltration Membrane (PET 나노섬유 강화 PEI 막의 제조 및 특성화 연구, 그에 따른 유기용매 나노여과막 가능성 검증)

  • Sung-Bae Hong;Kwangseop Im;Dong-Jun Kwon;Sang Yong Nam
    • Journal of Adhesion and Interface
    • /
    • v.24 no.1
    • /
    • pp.17-25
    • /
    • 2023
  • In this study, waste polyethylene terephthalate (PET) was recycled to produce a support and then polyetherimide (PEI) was used for environmentally friendly organic solvent nanofiltration. The prepared composite membrane was first prepared by electrospinning a PET support, then casted on the support using PEI having excellent solvent resistance, and organic solvent nanoparticles using a Non-solvent Induced Phase Separation (NIPS) method. A filtration membrane was prepared. First, the fiber diameter and tensile strength of the PET scaffold prepared prior to membrane fabrication were identified through morphology analysis, and the optimal scaffold for the organic solvent nanofiltration membrane was identified. Afterward, the PET/PEI composite membrane prepared was checked for the DEA removal rate of Congo red having a molecular weight of 697 g/mol in ethanol to understand the performance as an organic solvent nanofiltration membrane according to the concentration of PEI. Finally, the removal rate of Congo red was 90% or more.

Development of Porous Support with Mine Waste Materials (광산 폐기물을 활용한 다공성 담체 개발)

  • 정문영;정명채;최연왕
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.143-151
    • /
    • 2004
  • This study focused on examining the possibility of recycling mine solid waste as environmental materials, especially for porous media. Basic properties including mineralogical compositions, chemical compositions, and particle size distribution of the tailings from the Sangdong W mine were checked. The mineralogical and chemical compositions of the tailings samples were not much different in depth. According to Korean Standard Leaching Test for Wastes(KSLT), concentrations of heavy metals leached from the tailings were below the standard values. As a result of particle size analysis, the median diameter (d$_{50}$) of the tailings was in the range of 10 to 30 ${\mu}{\textrm}{m}$. The stable tailings slurry made up of 3 ${\mu}{\textrm}{m}$ in d$_{50}$ was prepared using Attrition Mill. The milling condition was 40 vol% in slurry concentration, 700 rpm in stirring speed, and 1 hour in milling time. PEI was added as dispersing agent. Concentrated slurry was extended to 3 times by foaming method. In the case of 3 times foamed slurry, the total and open porosity of ceramic supports sintered at 1,075$^{\circ}C$ for 90 minutes was about 80% and 72%, respectively. Pore size was in the range of 30∼350${\mu}{\textrm}{m}$. Therefore, the tailings could be recycled starting material for environmental materials such as macroporous ceramic support.