• Title/Summary/Keyword: recycled materials

Search Result 904, Processing Time 0.03 seconds

Evaluation of Chloride Ion Diffusion Characteristics of Concrete according to the Replacement Rate of Recycled Aggregate (순환골재 치환율에 따른 콘크리트 염소이온 확산 특성 평가)

  • Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.203-204
    • /
    • 2023
  • Recycled aggregate is an aggregate that satisfies the quality as an aggregate by crushing waste concrete and passing it through a separator. The government grants a floor area ratio of up to 15% and building height mitigation when more than 25% of the recycled building materials are used. In addition to environmental protection issues, it is necessary to actively utilize recycled aggregates that meet the standards to secure the business feasibility of buildings. This study attempted to derive the results according to the substitution rate by measuring the chloride ion diffusion characteristics based on the electrophoresis method.

  • PDF

Evaluation of Control Efficiency of Oil Mark Originated from the Recycled Fibers (재활용폐지 유래 기름반점 제어효율 평가)

  • Sung, Yong Joo;Yoon, Do-Hyun;Kim, Dong Sub;Lee, Ji-Young;Heo, Young-Jun;Kim, Young-Hoon;Kim, Yeon-Oh;Lee, Se-Ran
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.5
    • /
    • pp.69-78
    • /
    • 2014
  • The paper recycling becomes more important technology in terms of the reduction of the municipal waste and of saving natural resource such as wood. However the more utilization of recycled fiber would result in the higher contaminants in the papermaking processes and in the deterioration of the paper quality. The oil marks in the paper products becomes one of the major defects of paper products originated from paper recycling. The coagulation of various stickies in recycled fiber stock led to the oil marks. In this work, we applied functional polymer additives such as the dispersing agents, the fixing agents and the hydrophobic talc powder for the control of those stickies in order to remove the oil marks. The addition of the talc powder showed the great reduction in the oil marks of the packaging paper products. The hydrophobic surface of the talc particles collected the individual sticky materials and prevented their aggregation in the recycled fiber stock, which resulted in the great reduction of the oil marks on the paper products.

Strength and Durability Evaluation of Recycled Aggregate Concrete

  • Yehia, Sherif;Helal, Kareem;Abusharkh, Anaam;Zaher, Amani;Istaitiyeh, Hiba
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.2
    • /
    • pp.219-239
    • /
    • 2015
  • This paper discusses the suitability of producing concrete with 100 % recycled aggregate to meet durability and strength requirements for different applications. Aggregate strength, gradation, absorption, specific gravity, shape and texture are some of the physical and mechanical characteristics that contribute to the strength and durability of concrete. In general, the quality of recycled aggregate depends on the loading and exposure conditions of the demolished structures. Therefore, the experimental program was focused on the evaluation of physical and mechanical properties of the recycled aggregate over a period of 6 months. In addition, concrete properties produced with fine and coarse recycled aggregate were evaluated. Several concrete mixes were prepared with 100 % recycled aggregates and the results were compared to that of a control mix. SEM was conducted to examine the microstructure of selected mixes. The results showed that concrete with acceptable strength and durability could be produced if high packing density is achieved.

Strength and behaviour of recycled aggregate geopolymer concrete beams

  • Deepa, Raj S;Jithin, Bhoopesh
    • Advances in concrete construction
    • /
    • v.5 no.2
    • /
    • pp.145-154
    • /
    • 2017
  • In the present day scenario, concrete construction is rapidly becoming uneconomical and non sustainable practice, due to the scarcity of raw materials and environmental pollution caused by the manufacturing of cement. In this study an attempt has been made to propose recycled aggregates from demolition wastes as coarse aggregate in geopolymer concrete (GPC). Experimental investigations have been conducted to find optimum percentage of recycled aggregates (RA) in GPC by replacing 20%, 30%, 40%, 50% and 60% of coarse aggregates by RA to produce recycled aggregate geopolymer concrete (RGPC). From the study it has been found that the optimum replacement percentage of recycled aggregates was 40% based on mechanical properties and workability. In order to study and compare the flexural behaviour of RGPC and GPC four beams of size $175mm{\times}150mm{\times}1200mm$ were prepared and tested under two point loading. Test results were evaluated with respect to first crack load, ultimate load, load-deflection characteristics, ductility and energy absorption characteristics. Form the experimental study it can be concluded that the addition of recycled aggregate in GPC causes slight reduction in its strength and ductility. Since the percentage reduction in strength and behaviour of RGPC is meager compared to GPC it can be recommended as a sustainable and environment friendly construction material.

Experimental Study on Mechanical Properties and Deformation Behavior of Concrete with Recycled Aggregates and Steel Fiber (순환골재 및 강섬유를 혼입한 콘크리트의 역학적 특성 및 변형 거동에 관한 실험적 연구)

  • Lee, Hyun-Ho;Lee, Tae-Wang
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.357-363
    • /
    • 2016
  • To solve the exhaustion problem of natural aggregate which were create the high value in construction and environmental industry, recycled aggregates have considerable benefits than other materials. However, even though many researches have been conducted with recycled aggregates, building structures with recycled aggregated are rarely constructed because it has lower quality than natural aggregates have. In this study, mechanical and strain properties of recycled aggregates concrete containing steel fibers have been reviewed in order to complement performance of recycled aggregates concrete. As results, recycled aggregates concrete showed lower compressive strength and elastic modulus than plain concrete. But, recycled aggregates concrete containing steel fibers showed equivalent performance with plain concrete. In review of drying shrinkage and creep coefficient, recycled aggregates concrete containing steel fibers showed similar behavior with plain concrete in the range of 0.5 Vol.% fiber content rate by internal restraint effect, moisture transport restraint effect and strength enhancement effect of steel fiber. Therefore, it is considered that mixing steel fibers with concrete is the effective method as a active application plan for recycled aggregates.

Evaluation of Impurity Content Criteria of Recycled Aggregate for Lean Concrete Base (빈배합 콘크리트 기층용 순환골재의 이물질 품질기준 적정성 연구)

  • Kim, Nam-Ho;Yang, Seung-Cheol
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.69-76
    • /
    • 2012
  • A recent shortage in Korean aggregate market leads a social demand to utilize recycled aggregate to more advanced level, such as the use in concrete structures or paving materials for surface and base layers. Government announced a recycled aggregate guideline in 2009 to provide an institutional framework for recycled aggregate in such an up-scaled use. The use of recycled aggregate in such use; however, is very minimal. This paper evaluates the validity of the impurity content criteria of recycled aggregate for lean concrete base through a series of material tests. The analysis results shows that reclaimed asphalt pavement (RAP) in recycled aggregate not only influence a strength lean concrete adversely, but also influence negatively on an absorption and abrasion characteristics of aggregate system significantly that made those two indices lower. Since absorption and abrasion characteristics are very important indices for recycled aggregate quality, RAP in recycled aggregate could significantly mislead the recycled aggregate qualification. This paper provides a suggestion to resolve these problems.

Mechanical Characteristics of GF/recycled PET Thermoplastic Composites with Chopped Fiber According to Cross Section (단면형상에 따른 GF/rPET 열가소성 복합재료의 물리적 특성 연구)

  • Kim, Ji-hye;Lee, Eun-soo;Kim, Myung-soon;Sim, Jee-hyun
    • Textile Coloration and Finishing
    • /
    • v.29 no.4
    • /
    • pp.239-246
    • /
    • 2017
  • Recently fiber-reinforced thermoplastic composites have attracted great interest from industry and study because they offer unique properties such as high strength, modulus, impact resistance, corrosion resistance, and damping reduction which are difficult to obtain in single-component materials. The demand for plastics is steadily increasing not only in household goods, packaging materials, but also in high-performance engineering plastic and recycling. As a result, the technology of recycling plastic is also attracting attention. In particular, many paper have studied recycling systems based on recycled thermoplastics. In this paper, properties of Glass Fiber Reinforced Thermoplastic(GFRTP) materials were evaluated using recycled PET for injection molding bicycle frame. The effect on thermal and mechanical properties of recycled PET reinforced glass chop fiber according to fiber cross section and fiber content ratio were studied. And it was compared void volume and torque energy by glass fiber cross section, which is round section and flat section. Mechanical characteristics of resulting in GF/rPET has been increased by increasing fiber contents, than above a certain level did not longer increased. And mechanical properties of flat glass fiber reinforced rPET with low void volume were most excellent.

A Study on Characteristics of Flexural Behavior of High-strength Polymer Concrete Beams Using Recycled PET (PET 재활용 고강도 폴리머 콘크리트보의 휨거동에 관한 연구)

  • Cho Byung-Wan;Park Jong-Hwa;Park Seung-Kook;Bea Sung-Wan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.483-486
    • /
    • 2005
  • The polymer concrete is drawing a strong interest as high-performance materials in the construction industry. Resins using recycled PET offer the possibility of a lower source cost of materials for making useful polymer concrete products. Also the recycling of PET in polymer concrete would help solve some of the solid waste problems posed by plastics and save energy. Polymer concrete beams using unsaturated polyester resins based on recycled polyethylene terephthalate (PET) plastic waste were used in our study for grasping its structural behavior of static and fatigue. As a result of static test, Compression stress distribution of Polymer concrete indicates linear behavior such as triangles. Although polymer concrete is high strength materials, its ductility capacity is excellent. From the fatigue test results, There was almost no difference on flexural characteristics between before and after fatigue loading. Therefore, recycled PET polymer concrete remains excellent structural ability after fatigue loading.

  • PDF

4H-SiC bulk single crystal growth using recycled powder (재생 분말을 활용한 4H-SiC 벌크 단결정 성장)

  • Yeo, Im Gyu;Lee, Jae Yoon;Chun, Myong Chuel
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.5
    • /
    • pp.169-174
    • /
    • 2022
  • This study is to verify the feasibility of SiC single crystal growth using recycled SiC powder. The fundamental physical properties such as particle size, shape, composition and impurities of the recycled powder were analyzed, and the sublimation behavior occurring inside the reactor were predicted using the basic data. As a result of comprehensive judgment, the physical properties of the recycled powder were suitable for single crystal growth, and single crystal growth experiments were conducted using this. 100 mm 4H-SiC single crystal ingot with a height of 25 mm was grown without polytype inclusion. In the case of micro-pipe density was 0.02 ea/cm2 and resistivity characteristics was 0.015~0.020 ohm·cm2, commercial level quality was obtained, but additional analysis related to dislocation density and stacking faults is required for device application.

Case Study on Sustainable office space of the LEED Green Building in the United States - Focused on the Materials and Resources of Indoor Evaluation Factors - (미국 내 LEED 그린빌딩의 지속가능한 업무공간 사례 연구 - 실내 평가요소 중 재료 및 자원을 중심으로 -)

  • Ha, Sook-Nyung;Han, Young-Ho
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.2
    • /
    • pp.176-185
    • /
    • 2013
  • (Background)In modern industrial society, the design industry failed to observe the law of nature, destructing it. Regardless its intention, the design industry destructed the environment so that it can't maintain the future life because of waste and disaster. For the purpose, it is important to adopt the technology to reuse the waste resource generated by building or minimize the damage to environment for the resource that can't be recycled. (Methods)On the assumption that the material and resource can be an alternative plan for the design that can make environment be sustained, the study analyzed materials and resources out of superior office space of USA, which were selected by LEED Green Building Rating System. (Results)The analysis result revealed that all cases reused main structural part of existing building and indoor and various materials were reused or recycled. Especially, the materials without or with low amount of VOCs and formaldehyde were used. In order to reduce construction waste, the finish of existing building was exposed as it was, 50% of reused materials were used or disassemblable materials were used. When regional materials are used, there is an advantage to reduce transportation cost and recycle the materials rapidly. Lastly, the environment-friendly certified by FSC was used in all cases. (Conclusion)After all, the material is one of the space design strategies sensitive to environment so it is important to select good material. Harmless, environment-friendly materials applied to sustainable office space contribute to the creation of healthy environment. In addition, the use of recycled materials and reused materials to minimize waste is also essential factor for creating sustainable space.