• Title/Summary/Keyword: recycled fine

Search Result 420, Processing Time 0.022 seconds

Evaluation on the Applicability of Recycled Fine Aggregate to Precast Concrete Products (순환잔골재의 콘크리트 2차 제품 활용성 평가)

  • Kim, Sang-Chel;Park, Do-Kuk;Yoog, Keun-Chang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • While the amount of construction waste has not been changed much in discharge for last 10 years, the recycled resources refined from construction waste have been mainly applied to low-leveled one such as reclamation, back-fill, road base or subbase and so on. Thus this study addresses the applicability of recycled fine aggregate as a replaceable material in precast concrete. To evaluate the possibility, both of dry and wet processes were adopted as well as steam curing, widely used in the field for rapid producing. Most important experimental parameters were driven through preliminary experiments and were evaluated in terms of concrete properties. It is found from aggregate-replacement tests that all of consistency and strengths of concrete were decreased as the ratio of recycled fine aggregate increased, and the amount of decrease can be estimated using proposed equations. Though the recycled fine aggregate showed a decrease of concrete properties more or less, the applicability in large volume as a constituent of precast product was well noted from experimental results.

Evaluation of Application of High Quality Recycled Fine Aggregate Manufacturing System by the Drying Specific Gravity Separation Method (건식비중분리법에 의한 고품질 재생잔골재 제조생산 시스템의 적용성 평가)

  • Kim Moo-Han;Kim Jae-Hwan;Kim Yong-Ro;Na Chul-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.69-76
    • /
    • 2005
  • In this study, the high qualify recycled fine aggregate manufacturing system by the drying specific gravity separation method was evaluated. For the evaluation of the performance of the recycled aggregate, the engineering properties and durability of recycled aggregate has been tested. From the test results, the quality of recycled fing aggregates was improved by high quality recycled fine aggregate manufacturing system and satisfied with the quality standards of KS and JASS 5. Also, compressive and tensile strengths of recycled concrete show no critical difference caused by recycled fine aggregate replacement ratio. However, durability such as carbonation depth chloride ion penetration depth and drying shrinkage shows more deterioration than the concrete without recycled fine aggregate

A Study on Application of Recycled Aggregate for Improving Fluidity of Concrete (콘크리트의 유동성 개선을 위한 순환골재 활용에 관한 연구)

  • Song, Il-Hyun;Ryou, Jae-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.219-220
    • /
    • 2009
  • The PillPose of this study, powder containing the recycled fine aggregate is appropriate for developing high strength and liquidity, the characteristic of the SCC and it was increased the ratio of mixing the recycled fine aggregates resulted from waste concrete and the natural fine aggregates by 25%, making differential in total 5 levels and applied to SCC. After all, this study was reviewed the physical properties of the fresh concrete, mechanics and durability of the hardened concrete and tried to ensure the possibility of utilizing the recycled fine aggregates as a material for SCC.

  • PDF

A Study on the Quality Evaluation of Recycled Aggregate (In the case of the Mortar Produced With Recycled Concrete Powder) (재생 골재의 품질 평가에 관한 연구 (콘크리트폐재의 미분말을 혼입한 재생몰탈의 경우))

  • 서상교
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.172-179
    • /
    • 1996
  • Recently, the broken concrete lumps resulting from the demolition of concrete structures are creshed for reuse as aggregates(i.e. recycled fine and gravel). And also, in the processing of crusing, the recycled powder of an equivalent of between 20% to 30% by wt.% of the broken concrete lumps is generated. The extensive research of recycled concrete aggregates has been carried out in various parts of the world. But less reseatch on the reuse of recycled concrete powder has been carried out. It is the purpose of this report that the study on the quality evaluation of recycled aggregates for recycled concrete. In specially, this report deals with the properties such as flow, compressive strength, bending strength, drying shrinkage and wight loss rate of mortars replaced standard fine aggregate with recycled powders at the rate of 3, 7, 15, 20 and 30 wt.%. Since the characteristics of recycled mortars with the recycled powders were comparable to those of the normal mortar without the recycled powders as described above, its concretes could be found extensive application in such field as concrete products.

  • PDF

A Study on the Engineering Property and Durability of Recycled Concrete with Replacement Ratio of Recycled Fine Aggregate and Fly-ash (재생잔골재 및 플라이애시 대체율에 따른 재생콘크리트의 공학적 특성 및 내구성능에 관한 연구)

  • Kim, Moo-Han;Kim, Gyu-Yong;Kim, Jae-Whan;Cho, Bong-Suk;Kim, Young-Sun;Moon, Hyung-Jae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.89-97
    • /
    • 2005
  • Recently, for the problem solution of demand and supply imbalance of fine aggregate due to the shortage of natural fine aggregate resource and the environment regulation on sea sand extraction in the construction field, the studies for the application of recycled fine aggregate using waste concrete are being progressed versatilely. On the other hand, the treatment of fly-ashes that of industrial by-product originated in the steam power plant is discussed by the continuous increasing of origination quantities. In the ease of using fly-ash, advantages are the improvement of workability, viscosity and long-time strength, and the reduction of hydration heat under the early ages, as the admixtures for concrete, but the studies for the application of fly-ash as recycled concrete admixtures are inadequacy. There fore, in this study, through investigating the properties of fresh, hardened and durability according to the replacement of recycled fine aggregate and fly-ash, it is intended to propose the fundamental data for structural application of recycled concrete using recycled fine aggregate and fly-ash. As the result of this study, they arc shown that the engineering properties and durability, in the case of replacement ratio 100% of recycled fine aggregate, arc similar to those of concrete using natural fine aggregate, so it is considered that recycled fine aggregate could be used as the fine aggregate for concrete. Also, the performances of recycled concrete are improved by replacing fly-ash.

  • PDF

An Experimental Study on the Estimation of Compressive Strength and the Physical Properties of Recycled Aggregate Concrete of Fixed Slump (슬럼프 고정 순환골재콘크리트의 물리적 특성 및 압축강도 추정에 관한 실험적 연구)

  • Kim, Sang-Heon;Jeon, Chan-Soo;Lee, Sea-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.51-58
    • /
    • 2018
  • This study was a basic research for actual production of recycled aggregate concrete, and experiments were carried out on the change of water cement ratio and physical properties of recycled aggregate concrete with fixed slump. Results were as follows. Concrete using recycled aggregate were required increased water to maintain the target slump, and the recycled fine aggregate are necessary more increased water more than the recycled coarse aggregate. The replacement ratio of recycled fine aggregate be less than 60%, would be possible to obtain the air content volume that did not deviate from the concrete quality specification. The compressive strength of concrete using recycled aggregate decreased with increasing the replacement of recycled aggregate, and compressive strength decreased by 25% when 100% recycled fine aggregate were replaced. As a result of analyzing the correlation of compressive strength according to the mixing factors of concrete, it was found that replacement of recycled fine aggregate> water cement ratio> air content volume were influenced in order.

A Study on the Durability of Recycled Aggregate Using Polypropylene Fibers (폴리프로필렌을 혼합한 재생골재콘크리트의 내구성에 관한 연구)

  • 라재웅;신재인;양승배;구봉근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.419-424
    • /
    • 2000
  • The primary objectives of this study are to investigate the properties of strength and durability of recycled aggregate concrete was added polypropylene as variables and to fabricate fine concrete in some conditions. The variables are substitution ratios of recycled aggregate(0, 30, 50, 100%) and additions of polypropylene(0, 0.2, 0.5, 1.0%). Compressive strength test to investigate strength properties and freeze-thawing test and drying shrinkage test to durability properties were done. As the result of this study, When variables are substitution ratio(30%) of recycled aggregated and addition(0.5%) of polypropylene, fine concrete was fabricated.

  • PDF

Mechanical, rheological, and durability analysis of self-consolidating concretes containing recycled aggregates

  • Hiwa Mollaei;Taleb Moradi Shaghaghi;Hasan Afshin;Reza Saleh Ahari;Seyed Saeed Mirrezaei
    • Structural Engineering and Mechanics
    • /
    • v.88 no.2
    • /
    • pp.141-157
    • /
    • 2023
  • In the present paper, the effect of recycled aggregates on the rheological and mechanical properties of self-consolidating concrete is investigated experimentally and numerically. Hence, the specimen with two types of recycled aggregates, i.e., known and unknown resistance origins, are utilized for the studied specimens. The experiments in this study are designed using the Box-Behnken method, which is one of the response surface methods. Input variables in mixtures include silica fume in the range of 5-15% as a percentage substitute for cement weight and recycled coarse and fine aggregates in the range of 0-50% for both series of recycled materials as a substitute for natural materials. The studied responses are slump flow, V funnel, compressive strength, tensile strength, and durability. The results indicate that the increase in the amount of recycled aggregates reduces the rheological and mechanical properties of the mixtures, while silica fume effectively improves the mechanical properties. In addition, the results demonstrate that the fine recycled aggregates affect the total response of the concrete significantly. The results of tensile and compressive strengths indicate that the mixtures including 50% recycled materials with known resistance origin demonstrate better responses up to 8 and 10% compared to the materials with unknown resistance origins, respectively. Recycled materials with a specific resistance origin also show better results than recycled materials with an unknown resistance origin. Durability test results represent those concretes containing recycled coarse aggregates have lower strength compared to recycled fine aggregates. Also, a series of mathematical relationships for all the responses are presented using variance analysis to predict mixtures' rheological and mechanical properties.

Experimental Study on the Properties of Recycled Concrete using Recycled Coarse Aggregates and Steel Slag Fine Aggregates (재생 굵은골재와 제강슬래그 잔골재를 사용한 재생 콘크리트의 특성에 관한 실험적 연구)

  • Lee, Jaesung;Na, Okpin
    • Resources Recycling
    • /
    • v.24 no.5
    • /
    • pp.63-71
    • /
    • 2015
  • The purpose of this study is to investigate the optimum replacement rate and material properties of eco-friendly recycled concrete using recycled coarse aggregates and rapid-chilled steel slag fine aggregates. The replacement rate of recycled coarse aggregates was increased from 30% to 50% of total volume of coarse aggregates and the rapid-chilled steel slag aggregates were substituted for 10% to 50% of total volume of fine aggregates. As a result, the increment of recycled coarse aggregates in concrete caused the reduction of the compressive strength. On the other hand, as increasing the replacement ratio of rapid chilled steel slag aggregates, the compressive strength was enhanced. Furthermore, the optimum use of rapid chilled steel slag aggregates was suggested up to 20~30% of fine aggregates and the use of it could be helpful to expand the replacement rate of recycled aggregates.

Engineering Properties of the Non-Cement Mortar using the Fly ash from Combined Heat Power Plant and Recycled Fine Aggregate (열병합발전소 플라이애시와 순환잔골재를 사용한 무시멘트 모르타르의 공학적 특성)

  • Nam, Han-Kook;Lim, Jeong-Geun;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.6
    • /
    • pp.553-559
    • /
    • 2015
  • In this study, to suggest the application method of recycled fine aggregate, the non-cement mortar was prepared and studied with the binders of blast furnace slag, fly ash, and fly ash from combined heat power plant. As a basic experiment, a series of tests was conducted to determine the potions of the binders and types of activator. When the binder was consisted with 20% of fly ash and 40% of fly ash from combined heat power plant, the highest strength of the mortar was obtained, and as an activator, the combination of sodium hydroxide 2.5%, and calcium hydroxide 7.5% showed the highest strength of the mortar. Therefore, this study focuses on engineering properties of mortar contains fly ash from combined heat power plant and recycled fine aggregate according to replacement ratio of recycled fine aggregate based on the optimum mix from the basic experiment. As a result, the best replacement ratio of recycled fine aggregate is 75%.