• Title/Summary/Keyword: recycle water

Search Result 246, Processing Time 0.033 seconds

Removal of sulfate ion from semiconductor wastewater by ettringite precipitation

  • Chung, Chong-Min
    • Membrane and Water Treatment
    • /
    • v.13 no.4
    • /
    • pp.183-189
    • /
    • 2022
  • This study seeks towards an optimal way to control sulfate ions in semiconductor wastewater effluent with potential eco-toxicity. We developed a system based on ettringite (Ca6Al2(SO4)3(OH)12·26H2O). The basic idea is that the pH of the water is raised to approximately 12 with Ca(OH)2. After, aluminium salt is added, leading to the precipitation of ettringite. Lab-scale batch and continuous experiment results with real semiconductor wastewater demonstrated that 1.5 and 1 of stoichiometric quantities for Ca2+ and A3+ with pH above 12.7 could be considered as the optimal operation condition with 15% of sludge recycle to the influent. A mixed AlCl3 + Fe reagent was selected as the beneficial Al3+ source in ettringite process, which resulted in 80% of sludge volume reduction and improved sludge dewaterability. The results of continuous experiment showed that with precipitation as ettringite, sulfate concentration can be stably reduced to less than 50 mg/L in effluent from the influent 2,050 ± 175 mg/L on average (1,705 ~ 2,633 mg/L).

Synthesis of Pd/Cu-Fe polymetallic nanoparticles for in situ reductive degradation of p-nitrophenol

  • Wenbin, Zhang;Lanyu, Liu;Jin, Zhao;Fei, Gao;Jian, Wang;Liping, Fang
    • Membrane and Water Treatment
    • /
    • v.13 no.2
    • /
    • pp.97-104
    • /
    • 2022
  • With a small particle size, specific surface area and chemical nature, Pd/Cu-Fe nanocomposites can efficiently remove the organic compounds. In order to understand the applicability for in situ remediation of contaminated groundwater, the degradation of p-nitrophenol by Pd/Cu-Fe nanoparticles was investigated. The degradation results demonstrated that these nanoparticles could effectively degrade p-nitrophenol and near 90% of degradation efficiency was achieved by Pd/Cu-Fe nanocomposites for 120 min treatment. The efficiency of degradation increased significantly when the Pd content increased from 0.05 wt.% and 0.10 wt.% to 0.20 wt.%. Meanwhile, the removal percentage of p-nitrophenol increased from 75.4% and 81.7% to 89.2% within 120 min. Studies on the kinetics of p-nitrophenol that reacts with Pd/Cu-Fe nanocomposites implied that their behaviors followed the pseudo-first-order kinetics. Furthermore, the batch experiment data suggested that some factors, including Pd/Cu-Fe availability, temperature, pH, different ions (SO42-, PO43-, NO3-) and humic acid content in water, also have significant impacts on p-nitrophenol degradation efficiency. The recyclability of the material was evaluated. The results showed that the Pd/Cu-Fe nanoparticles have good recycle performance, and after three cycles, the removal rate of p-nitrophenol is still more than 83%.

Engineering Characteristics of Mixtures according to Water Sludge Ratio and Reinforcing Waste Fishing Net (정수슬러지의 혼합비율 및 폐어망 보강에 따른 혼합토의 공학적 특성)

  • Yun, Daeho;Kim, Yuntae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.4
    • /
    • pp.29-37
    • /
    • 2013
  • In order to recycle both water sludge and waste fishing net(WFN), it was investigated in this paper the engineering characteristics of mixtures that consisted of different content of water sludge(0%, 10%, 30%, 50%) and reinforced with waste fishing net(unreinforced, untreated WFN, glue treated WFN). WFN or glue treated WFN(1&2 layers) was also added to the mixture to improve the interlocking between the soil particle and WFN. Several series of laboratory tests such as compaction test, triaxial test, oedometer test, permeability test and leaching test were carried out. The experimental test results indicated that, as water sludge content increases, maximum dry unit weight, cohesion, friction angle, and permeability of the mixture decrease, while optimum moisture content, compression index, expansion index and compressibility increase. For the case of reinforced mixture, its cohesion and friction angle are increased due to the inclusion of WFN and glue treated WFN. Leaching result of mixture was satisfied with standard of ministry of environment.

Recovery of $SF_6$ gas from Gaseous Mixture ($SF_6/N_2/O_2/CF_4$) through Polymeric Membranes (고분자 분리막을 이용한 혼합가스($SF_6/N_2/O_2/CF_4$)로부터 $SF_6$의 회수)

  • Lee, Hyun-Jung;Lee, Min-Woo;Lee, Hyun-Kyung;Choi, Ho-Sang;Lee, Sang-Hyup
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • During the maintenance, repair and replacement process of circuit breaker, $SF_6$ reacted with input air in arc discharge, which led to the production of by-product gases (eg, $N_2$, $O_2$, $CF_4$, $SO_2$, $H_2O$, HF, $SOF_2$, $CuF_2$, $WO_3$). Among these various by-product gases, $N_2$, $O_2$, $CF_4$ is major component. Therefore, the effective separation process is necessary to recycle the $SF_6$ gas from the mixture gas containing $N_2$, $O_2$, $CF_4$. In this study, the membrane separation process was applied to recycle the $SF_6$ gas from the mixture gas containing $N_2$, $O_2$, $CF_4$. The concentration of $SF_6$ gas in gas produced from the electric power industry is over than 90 vol%. Therefore, we made the simulated gas containing $N_2$, $O_2$, $CF_4$, $SF_6$ which the concentration of $SF_6$ gas is minimum 90 vol%. From the results of membrane separation process of $SF_6$ gas from $N_2$, $O_2$, $CF_4$ $SF_6$ mixture gases, PSF membrane shown the highest recovery efficiency 92.7%, in $25^{\circ}C$ and 150 cc/min of retentate flow rate. On the other hand, PC membrane shown the highest recovery efficiency 74.8%, in $45^{\circ}C$ and 150 cc/min of retentate flow rate. Also, the highest rejection rate of $N_2$, $O_2$, $CF_4$ is 80, 74 and 58.9% seperately in the same operation condition of highest recovery efficiency. From the results, we supposed the membrane separation process as the effective $SF_6$ separation and recycle process from the mixture gas containing $N_2$, $O_2$, $CF_4$, $SF_6$.

Purification of wastewater from paper factory by superconducting magnetic separator (초전도 자기분리에 의한 제지폐수의 정수)

  • Ha, Dong-Woo;Kim, Tae-Hyung;Kwon, Jun-Mo;Sohn, Myung-Hwan;Baik, Seung-Kyu;Oh, Sang-Soo;Ha, Hong-Soo;Ko, Rock-Kil;Kim, Ho-Sup;Kim, Young-Hun;Ha, Tae-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.342-343
    • /
    • 2009
  • Paper factories use a large amount of water and same amount of wastewater is generated. It is important to purity and recycle the wastewater because of water shortages and water pollution. The existing water treatment facilities like precipitation process need large-scale equipment and wide space to purity the wastewater of paper factory. High gradient magnetic separation (HGMS) system has the merits to purity rapidly because of large voids at filter and to occupy small space. In this paper, two types of superconducting magnets were used for HGMS systems. Cryo-cooled Bi-2223 superconducting magnet system with 70 mm room temperature bore and 200 mm of height was prepared. Cryo-cooled Nb-Ti superconducting magnet with 100 mm room temperature bore and 600 mm of height was used for magnetic separator. Magnetic filters were designed by the analysis of magnetic field distribution at superconducting magnets. The various magnetic seeding reactions were investigated to increase the reactivity of coagulation. The effects of magnetic separation of wastewater were investigated as variation of magnetic field strength and flow rate of wastewater.

  • PDF

Effects of Elutriating Rates for Elutriated Acid Fermentation of Food Waste (음식물쓰레기 세정산발효공정에서 세정율의 영향)

  • Kwon, Koo-Ho;Lee, Sang-Hyub;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.201-205
    • /
    • 2008
  • The korean government started to ban the sanitary landfill of food wastes as of 2005. The radical change of policy is primarily due to the limited landfill site, but aimed to promote not only to reduce the food waste production but also to enhance the reuse and recycle. The performance of elutriated acid fermentation to evaluate the effects of elutriating ratios was investigated. The fermenters were operated with elutriating water to food waste volumetric ratio of 2, 1, 0.5 and 0.25. Initial pH of elutriating water was set for 9 based on the pH effects study. The cumulative amounts of SCOD production rate were $0.34gSCOD/gVS_i$, $0.45gSCOD/gVS_i$, $0.26gSCOD/gVS_i$ and $0.28gSCOD/gVS_i$ with the ratios of 2, 1, 0.5 and 0.25, respectively. The cumulative productions of VFAs were 0.12 gVFAs as $COD/gVS_i$, 0.28 gVFAs as $COD/gVS_i$, 0.21 gVFAs as $COD/gVS_i$ and 0.14 gVFAs as $COD/gVS_i$ with the ratios of 2, 1, 0.5 and 0.25, respectively. The volume reduction were 58%, 52%, 45% and 47% with the ratios of 2, 1, 0.5 and 0.25, respectively.

Purification of wastewater from paper factory by cryo-cooled high-$T_c$ superconducting magnetic separator (전도냉각형 고온초전도 자석을 이용한 제지폐수의 자기분리에 의한 정수)

  • Ha, Dong-Woo;Kim, Tae-Hyung;Sohn, Myung-Hwan;Kwon, Jun-Mo;Baik, Seung-Kyu;Oh, Sang-Soo;Ko, Rock-Kil;Ha, Hong-Soo;Kim, Ho-Sup;Kim, Young-Hun;Kang, Che-Hun;Ha, Tae-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.4-4
    • /
    • 2009
  • Paper factories use a large amount of water and same amount of wastewater is generated. It is important to recycle the wastewater because of water shortages and water pollution. The existing water treatment facilities like precipitation process need large-scale equipment and wide space to purify the wastewater of paper factory. High gradient magnetic separation (HGMS) system has the merits to purify rapidly because of large voids at filter and to occupy small space. In this paper, two types of superconducting magnets were used for HGMS systems. Cryo-cooled Bi-2223 superconducting magnet system with 70 mm room temperature bore and 200 mm of height was prepared. Cryo-cooled Nb-Ti superconducting magnet with 100 mm room temperature bore and 600 mm of height was used for magnetic separator. Magnetic filters were designed by the analysis of magnetic field distribution at superconducting magnets. The various magnetic seeding reactions were investigated to increase the reactivity of coagulation. The effects of magnetic separation of wastewater were investigated as variation of magnetic field strength and flow rate of wastewater.

  • PDF

A Study on the Treatment of Ammonia-Nitrogen in the Septic Tank Effluent Using Biological Fluidized Bed (생물학적(生物學的) 유동층(流動層)을 이용(利用)한 정화조유출수(淨化槽流出水)의 암모니아성(性) 질소제거(窒素除去)에 관한 연구(研究))

  • Kim, Hwan Gi;Kwon, Moon Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.35-44
    • /
    • 1986
  • This paper is a basic study of the experimental results for the treatment of ammonia-nitrogen in the septic tank effluent. The substrates in this experiment are actual septic tank effluent and synthetic waste-water which is similar to septic tank effluent containing a considerable amount of nitrogenous component. Experiments were conducted for organic removal and nitrification using various recycle ratio and hydraulic retention time at each stage. The results obtained show that organic removal rate was above 80% in the 1st and 2nd stage, but as nitrification process was proceeded, above 90% of ammonia-nitrogen was removed in the 3rd and 4th stage. In these cases, the recycle ratio and HRT were found 30 and 7 hrs respectively. In the relation of $NH_4{^+}-N$ removal to $NO_3{^-}-N$ formation in the synthetic waste-water and septic tank effluent, when $1mg/{\ell}$ of $NH_4{^+}-N$ was removed, $NO_3{^-}-N$ formations were $0.95mg/{\ell}$ and $0.82mg/{\ell}$ respectively. And kinetics of nitrification using Biological Fluidized Bed was discussed also.

  • PDF

Estimation of Local Change in Hydrometeorologic Environment due to Dam Construction (댐 건설로 인한 국지 수문기상환경의 변화 추정)

  • Yoo, Chul-Sang;Ahn, Jae-Hyun;Kang, Sung-Kyu;Kim, Kee-Wook;Yoon, Yong-Nam
    • Journal of Environmental Policy
    • /
    • v.4 no.1
    • /
    • pp.21-38
    • /
    • 2005
  • In this study, a model for analyzing the spatial effect of large dam reservoirs on local hydrometeorology was developed, and then actually applied to the Seomjingang Dam, Soyanggang Dam, Andong Dam, and Chungju Dam. The application included the analysis of land use using the satellite images to derive the change in albedo before and after the dam construction. Summarizing the modeling procedure and its application results are as follows. (1) The change in albedo was found to be closely related with the size of the dam, also the spatial limit of albedo change were estimated to be 10-20km for the Seomjingang Dam, 40km for the Soyanggang Dam, 20-30km for the Andong Dam, and 50km for the Chungju Dam. (2) The change in the coefficient of recycle (ratio of internal supply of moisture to the total available moisture) was found to be big within the narrow boundary of the. dam, but become smaller as the boundary becomes larger. (3) The correlation between the albedo and. coefficient of recycle was found high. Thus, it could be concluded that the change in land use due to dam construction has much effect on the moisture circulation structure. (4) The spatial range of hydrometeorogic effect was compared with the water surface area of dam reservoir. The result showed that the spatial range sensitively increased up to $50km^2$ of water surface area.

  • PDF

A Study on the Effect of an HRT of Anoxic Reactors on Organic Matter and Nitrogen Removal in A2/O Processes with Bio Contact Media in Aerobic Tank (호기조에 고정상 담체를 충진한 A2/O공정에서 무산소조 체류시간 변화가 유기물질 및 질소 제거에 미치는 영향)

  • Whang, Gye-Dae;Han, Bong-Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.451-457
    • /
    • 2007
  • Four parallel $A^2/O$ systems maintaining an MLSS of 3,000 mg/L were operated to investigate the effects of varying an HRT of anoxic reactors and packing Bio contact media (BCM, fixed beds) in aerobic reactors on organic matter removal and nitrification/denitrification efficiencies. All systems were operated under conditions that the external recycle ratio was kept 0.5 Q while the internal recycle ratio was changed 1.0 Q to 1.5 Q with that $NH_4-N$ concentration of feed was increased to 40 mg/L by adding $NH_4Cl$. In terms of TSS and TCODcr removal efficiency, both systems with BCM and a system without BCM, respectively, had a similar level of the removal efficiency under varied HRTs of anoxic reactors (0.6 hr, 1.3 hr, 2 hr, 2 hr; control, without BC M) showing that varying an HRT of anoxic reactors did not affect the removal efficiency. While SCODcr removal efficiency of systems with BCM was improved approximately 4~5% at the same HRT of anoxic reactor, the removal efficiency of system with BCM was slightly decreased by reducing an HRT of anoxic reactor. The nitrification efficiency for both systems with BCM and a system without BCM was above 94% showing that packing BCM in aerobic reactors and varying an HRT of anoxic reactors did not affect the efficiency significantly despite of increasing $NH_4-N$ concentration of feed. The denitrification efficiency increased from 81.4% to 85.4% at system with BCM while the efficiency decreased when a shorter HRT of anoxic reactors was kept. The excellent effluent quality for $NO_3-N$ concentration was observed although the $NO_3-N$ concentration increased in anoxic reactors that $NH_4-N$ concentration of feed sufficiently converted into nitrate through nitrification. As a result, packing 20% BCM to an aerobic reactor with HRT of 1.3 hr of anoxic reactor in $A^2/O$ system can achieve a similar level of nitrogen removal efficiency in $A^2/O$ system which the aerobic reactor had no BCM and HRT of 2 hr for anoxic reactor is maintained.