• Title/Summary/Keyword: recursive neural network

검색결과 70건 처리시간 0.02초

MODELLING THE DYNAMICS OF THE LEAD BISMUTH EUTECTIC EXPERIMENTAL ACCELERATOR DRIVEN SYSTEM BY AN INFINITE IMPULSE RESPONSE LOCALLY RECURRENT NEURAL NETWORK

  • Zio, Enrico;Pedroni, Nicola;Broggi, Matteo;Golea, Lucia Roxana
    • Nuclear Engineering and Technology
    • /
    • 제41권10호
    • /
    • pp.1293-1306
    • /
    • 2009
  • In this paper, an infinite impulse response locally recurrent neural network (IIR-LRNN) is employed for modelling the dynamics of the Lead Bismuth Eutectic eXperimental Accelerator Driven System (LBE-XADS). The network is trained by recursive back-propagation (RBP) and its ability in estimating transients is tested under various conditions. The results demonstrate the robustness of the locally recurrent scheme in the reconstruction of complex nonlinear dynamic relationships.

DS/SS 이동 통신에서 반복적 최소 자승 역전파 신경망을 이용한 적응 상관기 (Performance of Adaptive Correlator using Recursive Least Square Backpropagation Neural Network in DS/SS Mobile Communication Systems)

  • 정우열;김환용
    • 한국음향학회지
    • /
    • 제15권2호
    • /
    • pp.79-84
    • /
    • 1996
  • 본 논문은 CDMA 이동 통신 시스템에서 직접 순차 확산 스펙트럼의 협대역 간섭 신호를 억압하기 위해 다계층 퍼셉트론을 기본으로 한 역전파 신경망을 이용하여 적응 상관기 모델을 제시하였다. 적응 상관기 구조는 빠른 수렴 율과 보다 좋은 성능을 제공하기 위해 역전파된 에러를 가진 반복적 최소 자승 역전파 알고리즘을 도입하였다. 컴퓨터 시뮬레이션 결과는 동일 채널 간섭과 협대역 간섭을 고려한 신호 잡음비와 전송 전력비에 대해 직접 순차 확산 스펙트럼 적응 횡단선 필터의 비트 에러율보다 역전파 신경망을 이용한 적응 상관기의 비트 에러율이 개선됨을 보였고, 특히 간섭 대 신호비가 5dB인 곳에서 역전파 신경망을 이용한 적응 상관기가 적응 횡단선 필터의 비트 에러율보다 약 $10^{-1}$ 정도 감소되었다.

  • PDF

밀링공정의 적응모델링과 공구마모 검출을 위한 신경회로망의 적용 (Adaptive Milling Process Modeling and Nerual Networks Applied to Tool Wear Monitoring)

  • 고태조;조동우
    • 한국정밀공학회지
    • /
    • 제11권1호
    • /
    • pp.138-149
    • /
    • 1994
  • This paper introduces a new monitoring technique which utilizes an adaptive signal processing for feature generation, coupled with a multilayered merual network for pattern recognition. The cutting force signal in face milling operation was modeled by a low order discrete autoregressive model, shere parameters were estimated recursively at each sampling instant using a parameter adaptation algorithm based on an RLS(recursive least square) method with discounted measurements. The influences of the adaptation algorithm parameters as well as some considerations for modeling on the estimation results are discussed. The sensitivity of the extimated model parameters to the tool state(new and worn tool)is presented, and the application of a multilayered neural network to tool state monitoring using the previously generated features is also demonstrated with a high success rate. The methodology turned out to be quite suitable for in-process tool wear monitoring in the sense that the model parameters are effective as tool state features in milling operation and that the classifier successfully maps the sensors data to correct output decision.

  • PDF

다중 경로 채널 시스템에서 신경회로망을 이용한 간섭 신호 제거 (Rejection of Interference Signal Using Neural Network in Multi-path Channel Systems)

  • 석경휴
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 학술발표대회 논문집 제17권 1호
    • /
    • pp.357-360
    • /
    • 1998
  • DS/CDMA system rejected narrow-band interference and additional White Gaussian noise which are occured at multipath, intentional jammer and multiuser to share same bandwidth in mobile communication systems. Because of having not sufficiently obtained processing gain which is related to system performance, they were not effectively suppressed. In this paper, an matched filter channel model using backpropagation neural network based on complex multilayer perceptron is presented for suppressing interference of narrow-band of direct sequence spread spectrum receiver in DS/CDMA mobile communication systems. Recursive least square backpropagation algorithm with backpropagation error is used for fast convergence and better performance in matched filter receiver scheme. According to signal noise ratio and transmission power ratio, computer simulation results show that bit error ratio of matched filter using backpropagation neural network improved than that of RAKE receiver of direct sequence spread spectrum considering of con-channel and narrow-band interference.

  • PDF

유도전동기의 속도 센서리스 제어를 위한 신경회로망 알고리즘의 추정 특성 비교 (Comparison of Different Schemes for Speed Sensorless Control of Induction Motor Drives by Neural Network)

  • 이경훈;국윤상;김윤호;최원범
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.526-530
    • /
    • 1999
  • This paper presents a newly developed speed sensorless drive using Neural Network algorithm. Neural Network algorithm can be divided into three categories. In the first one, a Back Propagation-based NN algorithm is well-known to gradient descent method. In the second scheme, a Extended Kalman Filter-based NN algorithm has just the time varying learning rate. In the last scheme, a Recursive Least Square-based NN algorithm is faster and more stable than the classical back-propagation algorithm for training multilayer perceptrons. The number of iterations required to converge and the mean-squared error between the desired and actual outputs is compared with respect to each method. The theoretical analysis and experimental results are discussed.

  • PDF

CDMA System에서 협대역 간섭제거 적응 상관기에 관한 연구 (A Study On Adaptive Correlator Receiver with Narrow-band Interferance in CDMA System)

  • 정찬주;양화섭;김용식;오승재;김재갑
    • 경영과정보연구
    • /
    • 제3권
    • /
    • pp.201-214
    • /
    • 1999
  • Adaptive correlator receiver with neural network based on complex multilayer perceptron is persented for suppressing interference of narrow-band of direct spread spectrum communication systems. Recursive least square algorithm with backpropagation error is used for fast convergence and better performance in adaptive correlator scheme. According to signal noise and transmission power, computer simulation results show that bit error ratio of adaptive correlator using neural network improved that of adative transversal filter of direct sequence spread spectrum considering of jamming and narrow-band interference. Bit error ratio of adaptive correlator with neural network is reduced about 10-1 than that of adaptive transversal filter where interference versus signal ratio is 5dB.

  • PDF

적응 퍼지-뉴럴 네트워크를 이용한 비선형 공정의 On-line 모델링 (On-line Modeling for Nonlinear Process Systems using the Adaptive Fuzzy-Neural Network)

  • 박춘성;오성권;김현기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.537-539
    • /
    • 1998
  • In this paper, we construct the on-line model structure for the nonlinear process systems using the adaptive fuzzy-neural network. Adaptive fuzzy-neural network usually consists of two distinct modifiable structure, with both, the premise and the consequent part. These two parts can be adapted by different optimization methods, which are the hybrid learning procedure combining gradient descent method and least square method. To achieve the on-line model structure, we use the recursive least square method for the consequent parameter identification of nonlinear process. We design the interface between PLC and main computer, and construct the monitoring and control simulator for the nonlinear process. The proposed on-line modeling to real process is carried out to obtain the effective and accurate results.

  • PDF

오차 자기순환 신경회로망 기반 반능동 현가시스템 제어기 개발 (The development of semi-active suspension controller based on error self recurrent neural networks)

  • 이창구;송광현
    • 제어로봇시스템학회논문지
    • /
    • 제5권8호
    • /
    • pp.932-940
    • /
    • 1999
  • In this paper, a new neural networks and neural network based sliding mode controller are proposed. The new neural networks are an mor self-recurrent neural networks which use a recursive least squares method for the fast on-line leammg. The error self-recurrent neural networks converge considerably last than the back-prollagation algorithm and have advantage oi bemg less affected by the poor initial weights and learning rate. The controller for suspension system is designed according to sliding mode technique based on new proposed neural networks. In order to adapt shding mode control mnethod, each frame dstance hetween ground and vehcle body is estimated md controller is designed according to estimated neural model. The neural networks based sliding mode controller approves good peiformance throllgh computer sirnulations.

  • PDF

신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀 위치제어 (Precision Position Control of PMSM Using Neural Network Disturbance observer and Parameter compensator)

  • 고종선;진달복;이태훈
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권3호
    • /
    • pp.188-195
    • /
    • 2004
  • This paper presents neural load torque observer that is used to deadbeat load torque observer and gain compensation by parameter estimator As a result, the response of the PMSM(permanent magnet synchronous motor) follows that nominal plant. The load torque compensation method is composed of a neural deadbeat observer To reduce the noise effect, the post-filter implemented by MA(moving average) process, is adopted. The parameter compensator with RLSM (recursive least square method) parameter estimator is adopted to increase the performance of the load torque observer and main controller The parameter estimator is combined with a high performance neural load torque observer to resolve the problems. The neural network is trained in on-line phases and it is composed by a feed forward recall and error back-propagation training. During the normal operation, the input-output response is sampled and the weighting value is trained multi-times by error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. As a result, the proposed control system has a robust and precise system against the load torque and the Parameter variation. A stability and usefulness are verified by computer simulation and experiment.

Problem Solving Path Algorithm in Distance Education Environment

  • Min, Youn-A
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권6호
    • /
    • pp.55-61
    • /
    • 2021
  • 원격교육에서 학습자의 효율적 학습을 지원하기 위하여 학습추적 알고리즘을 통한 문제해결 경로 제시가 필요하다. 본 논문에서는 기존 학습추적 알고리즘을 보완하여 다양한 과목에서 다양한 난이도의 문제 해결경로를 제안하였다. 학습자의 문제해결을 위한 경로를 통하여 얻은 데이터 셋을 통하여 프림 최소비용신장트리를 통한 경로를 확보하고 해당 Path 데이터셋을 통하여 재귀신경망을 통한 최적의 문제해결 경로를 제시하도록 하였다. 본 논문에서 제안한 내용에 대한 성능평가 결과 실험대상자 52% 이상이 문제해결 과정에서 제안한 문제해결 경로를 포함하였으며 문제해결 시간 역시 45% 이상 향상된 것을 확인하였다.