• Title/Summary/Keyword: recursive EM algorithm

Search Result 8, Processing Time 0.019 seconds

Improved Kalman filter performance via EM algorithm (EM 알고리즘을 통한 칼만 필터의 성능 개선)

  • Kang, Jee-Hye;Kim, Sung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2615-2617
    • /
    • 2003
  • The Kalman filter is a recursive Linear Estimator for the linear dynamic systems(LDS) affected by two different noises called process noise and measurement noise both of which are uncorrelated white. The Expectation Maximization(EM) algorithm is employed in this paper as a preprocessor to reinforce the effectiveness of Kalman estimator. Particularly, we focus on the relation between Kalman filter and EM algorithm in the LDS. In this paper, we propose a new algorithm to improve the performance on the parameter estimation via EM algorithm, which improves the overall process of Kalman filtering. Since Kalman filter algorithm not only needs the system parameters but also is very sensitive the initial state conditions, the initial conditions decided through EM turns out to be very effective. In experiments, the computer simulation results ate provided to demonstrate the superiority of the proposed algorithm.

  • PDF

Initial Value Selection in Applying an EM Algorithm for Recursive Models of Categorical Variables

  • Jeong, Mi-Sook;Kim, Sung-Ho;Jeong, Kwang-Mo
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.1
    • /
    • pp.25-55
    • /
    • 1998
  • Maximum likelihood estimates (MLEs) for recursive models of categorical variables are discussed under an EM framework. Since MLEs by EM often depend on the choice of the initial values for MLEs, we explore reasonable rules for selecting the initial values for EM. Simulation results strongly support the proposed rules.

  • PDF

An improvement on initial value selection in applying an EM algorithm for recursive models (순환모형에 대한 EM 알고리즘의 초기값 선정방법의 개선)

  • 정미숙;김성호
    • The Korean Journal of Applied Statistics
    • /
    • v.12 no.2
    • /
    • pp.433-447
    • /
    • 1999
  • 검사관련 능력과 문항점수사이의 관계를 모형화하기 위해 사용한 순환모형에서 관측불능인 능력상대변수를 비롯한 모든 변수들이 범주형 변수라 가정하자. 이 범주형 자료를 위한 모수추정문제를 다루기 위해 EM 방법을 이용했는데, EM 방법은 사용하기에 편리하지만 순환모형에 대한 추정값이 적절하지 않는 경우가 발생한다. 그 주된 원인중의 하나로 초기값 선정의 잘못을 들 수 있는데, 본 논문에서는 이 외에 구조상의 결함도 그 원인이 됨을 경험적으로 보았다. 따라서 구조적 결함을 먼저 해결하면 보다 효과적인 초기값을 선정할 수 있으리가 기대한다.

  • PDF

An Adaptive Multiple Target Tracking Filter Using the EM Algorithm (EM 알고리즘을 이용한 적응다중표적추적필터)

  • Hong Jeong;Park, Jeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.5
    • /
    • pp.583-597
    • /
    • 2001
  • Tracking the targets of interest has been one of the major research areas in radar surveillance system. We formulate the tracking problem as an incomplete data problem and apply the EM algorithm to obtain the MAP estimate. The resulting filter has a recursive structure analogous to the Kalman filter. The difference is that the measurement-update deals with multiple measurements and the parameter-update can estimate the system parameters. Through extensive experiments, it turns out that the proposed system is better than PDAF and NNF in tracking the targets. Also, the performance degrades gracefully as the disturbances become stronger.

  • PDF

Fluctuation of estimates in an EM procedure

  • Kim, Seong-Ho;Kim, Sung-Ho
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.157-162
    • /
    • 2003
  • Estimates from an EM algorithm are somewhat sensitive to the initial values for the estimates, and it is more likely when the model becomes larger and more complicated. In this article, we examined how the estimates fluctuate during an EM procedure for a recursive model of categorical variables. It is found that the fluctuation takes place mostly during the first half of the procedure and that it can be subdued by applying the Bayesian method of estimation. Both simulation data and real data are used for illustration.

  • PDF

Variable Selection in Clustering by Recursive Fit of Normal Distribution-based Salient Mixture Model (정규분포기반 두각 혼합모형의 순환적 적합을 이용한 군집분석에서의 변수선택)

  • Kim, Seung-Gu
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.5
    • /
    • pp.821-834
    • /
    • 2013
  • Law et al. (2004) proposed a normal distribution based salient mixture model for variable selection in clustering. However, this model has substantial problems such as the unidentifiability of components an the inaccurate selection of informative variables in the case of a small cluster size. We propose an alternative method to overcome problems and demonstrate a good performance through experiments on simulated data and real data.

Panel data analysis with regression trees (회귀나무 모형을 이용한 패널데이터 분석)

  • Chang, Youngjae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1253-1262
    • /
    • 2014
  • Regression tree is a tree-structured solution in which a simple regression model is fitted to the data in each node made by recursive partitioning of predictor space. There have been many efforts to apply tree algorithms to various regression problems like logistic regression and quantile regression. Recently, algorithms have been expanded to the panel data analysis such as RE-EM algorithm by Sela and Simonoff (2012), and extension of GUIDE by Loh and Zheng (2013). The algorithms are briefly introduced and prediction accuracy of three methods are compared in this paper. In general, RE-EM shows good prediction accuracy with least MSE's in the simulation study. A RE-EM tree fitted to business survey index (BSI) panel data shows that sales BSI is the main factor which affects business entrepreneurs' economic sentiment. The economic sentiment BSI of non-manufacturing industries is higher than that of manufacturing ones among the relatively high sales group.

A multivariate latent class profile analysis for longitudinal data with a latent group variable

  • Lee, Jung Wun;Chung, Hwan
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.1
    • /
    • pp.15-35
    • /
    • 2020
  • In research on behavioral studies, significant attention has been paid to the stage-sequential process for multiple latent class variables. We now explore the stage-sequential process of multiple latent class variables using the multivariate latent class profile analysis (MLCPA). A latent profile variable, representing the stage-sequential process in MLCPA, is formed by a set of repeatedly measured categorical response variables. This paper proposes the extended MLCPA in order to explain an association between the latent profile variable and the latent group variable as a form of a two-dimensional contingency table. We applied the extended MLCPA to the National Longitudinal Survey on Youth 1997 (NLSY97) data to investigate the association between of developmental progression of depression and substance use behaviors among adolescents who experienced Authoritarian parental styles in their youth.