• Title/Summary/Keyword: recursive

Search Result 1,608, Processing Time 0.029 seconds

Analytical solutions for sandwich plates considering permeation effect by 3-D elasticity theory

  • Huo, Ruili;Liu, Weiqing;Wu, Peng;Zhou, Ding
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.127-139
    • /
    • 2017
  • In this paper, an exact analytical solution for simply supported sandwich plate which considers the permeation effect of adhesives is presented. The permeation layer is described as functionally graded material (FGM), the elastic modulus of which is assumed to be graded along the thickness following the exponential law. Based on the exact three-dimensional (3-D) elasticity theory, the solution of stresses and displacements for each layer is derived. By means of the recursive matrix method, the solution can be efficiently obtained for plates with many layers. The present solution obtained can be used as a benchmark to access other simplified solutions. The comparison study indicates that the finite element (FE) solution is close to the present one when the FGM layer in the FE model is divided into a series of homogeneous layers. However, the present method is more efficient than the FE method, with which the mesh division and computation are time-consuming. Moreover, the solution based on Kirchhoff-Love plate theory is greatly different from the present solution for thick plates. The influence of the thickness of the permeation layer on the stress and displacement fields of the sandwich plate is discussed in detail. It is indicated that the permeation layer can effectively relieve the discontinuity stress at the interface.

An Analysis on Meta-praxis in the Educational Discoyrse (교육논의에서 '메타 프락시스'의 구조와 의미)

  • KIM, JEONG-NAE
    • (The)Korea Educational Review
    • /
    • v.22 no.3
    • /
    • pp.67-87
    • /
    • 2016
  • The paper has tried to analyze the sense of 'meta-praxis' in the educational discourse. Against the dichotomy of theory vs practice, the senses of practice and 'meta-praxis' can be hold under the Greek conception of human activities such as theoria, poiesis and praxis. We can establish the meaning of meta-praxis contrasted with one of metaphysics, not with one of meta-theory. Some significant points included in the concept then have been minutely examined so as to lead us to get the recursive structure and practicability. The Buddhist notion such as 'Well-Rounded Discretion' and the linguistic one such as 'Grand Father' throw light on the educational practice and discourse. These are ones that we never fail to recognize in terms of 'meta-praxis'.

Prediction on the Ratio of Added Value in Industry Using Forecasting Combination based on Machine Learning Method (머신러닝 기법 기반의 예측조합 방법을 활용한 산업 부가가치율 예측 연구)

  • Kim, Jeong-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.12
    • /
    • pp.49-57
    • /
    • 2020
  • This study predicts the ratio of added value, which represents the competitiveness of export industries in South Korea, using various machine learning techniques. To enhance the accuracy and stability of prediction, forecast combination technique was applied to predicted values of machine learning techniques. In particular, this study improved the efficiency of the prediction process by selecting key variables out of many variables using recursive feature elimination method and applying them to machine learning techniques. As a result, it was found that the predicted value by the forecast combination method was closer to the actual value than the predicted values of the machine learning techniques. In addition, the forecast combination method showed stable prediction results unlike volatile predicted values by machine learning techniques.

Condition assessment of bridge pier using constrained minimum variance unbiased estimator

  • Tamuly, Pranjal;Chakraborty, Arunasis;Das, Sandip
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.4
    • /
    • pp.319-344
    • /
    • 2020
  • Inverse analysis of non-linear reinforced concrete bridge pier using recursive Gaussian filtering for in-situ condition assessment is the main theme of this work. For this purpose, minimum variance unbiased estimation using unscented sigma points is adopted here. The uniqueness of this inverse analysis lies in its approach for strain based updating of engineering demand parameters, where appropriate bound and constrained conditions are introduced to ensure numerical stability and convergence. In this analysis, seismic input is also identified, which is an added advantage for the structures having no dedicated sensors for earthquake measurement. First, the proposed strategy is tested with a simulated example whose hysteretic properties are obtained from the slow-cyclic test of a frame to investigate its efficiency and accuracy. Finally, the experimental test data of a full-scale bridge pier is used to study its in-situ condition in terms of Park & Ang damage index. Overall the study shows the ability of the augmented minimum variance unbiased estimation based recursive time-marching algorithm for non-linear system identification with the aim to estimate the engineering damage parameters that are the fundamental information necessary for any future decision making for retrofitting/rehabilitation.

Development of an Adaptive Feedback based Actuator Fault Detection and Tolerant Control Algorithms for Longitudinal Autonomous Driving (적응형 되먹임 기반 종방향 자율주행 구동기 고장 탐지 및 허용 제어 알고리즘 개발)

  • Oh, Kwangseok;Lee, Jongmin;Song, Taejun;Oh, Sechan;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.4
    • /
    • pp.13-22
    • /
    • 2020
  • This paper presents an adaptive feedback based actuator fault detection and tolerant control algorithms for longitudinal functional safety of autonomous driving. In order to ensure the functional safety of autonomous vehicles, fault detection and tolerant control algorithms are needed for sensors and actuators used for autonomous driving. In this study, adaptive feedback control algorithm to compute the longitudinal acceleration for autonomous driving has been developed based on relationship function using states. The relationship function has been designed using feedback gains and error states for adaptation rule design. The coefficients in the relationship function have been estimated using recursive least square with multiple forgetting factors. The MIT rule has been adopted to design the adaptation rule for feedback gains online. The stability analysis has been conducted based on Lyapunov direct method. The longitudinal acceleration computed by adaptive control algorithm has been compared to the actual acceleration for fault detection of actuators used for longitudinal autonomous driving.

Development of the structural health record of containment building in nuclear power plant

  • Chu, Shih-Yu;Kang, Chan-Jung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.2038-2045
    • /
    • 2021
  • The main objective of this work is to propose a reliable routine standard operation procedures (SOP) for structural health monitoring and diagnosis of nuclear power plants (NPPs). At present, NPPs have monitoring systems that can be used to obtain the quantitative health record of containment (CTMT) buildings through system identification technology. However, because the measurement signals are often interfered with by noise, the identification results may introduce erroneous conclusions if the measured data is directly adopted. Therefore, this paper recommends the SOP for signal screening and the required identification procedures to identify the dynamic characteristics of the CTMT of NPPs. In the SOP, three recommend methods are proposed including the Recursive Least Squares (RLS), the Observer Kalman Filter Identification/Eigensystem Realization Algorithm (OKID/ERA), and the Frequency Response Function (FRF). The identification results can be verified by comparing the results of different methods. Finally, a preliminary CTMT healthy record can be established based on the limited number of earthquake records. It can be served as the quantitative reference to expedite the restart procedure. If the fundamental frequency of the CTMT drops significantly after the Operating Basis Earthquake and Safe Shutdown Earthquake (OBE/SSE), it means that the restart actions suggested by the regulatory guide should be taken in place immediately.

Problem Solving Path Algorithm in Distance Education Environment

  • Min, Youn-A
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.6
    • /
    • pp.55-61
    • /
    • 2021
  • As the demand for distance education increases, it is necessary to present a problem solving path through a learning tracking algorithm in order to support the efficient learning of learners. In this paper, we proposed a problem solving path of various difficulty levels in various subjects by supplementing the existing learning tracking algorithm. Through the data set obtained through the path for solving the learner's problem, the path through the prim's minimum Spanning tree was secured, and the optimal problem solving path through the recursive neural network was suggested through the path data set. As a result of the performance evaluation of the contents proposed in this paper, it was confirmed that more than 52% of the test subjects included the problem solving path suggested in the problem solving process, and the problem solving time was also improved by more than 45%.

Adaptive Milling Process Modeling and Nerual Networks Applied to Tool Wear Monitoring (밀링공정의 적응모델링과 공구마모 검출을 위한 신경회로망의 적용)

  • Ko, Tae-Jo;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.138-149
    • /
    • 1994
  • This paper introduces a new monitoring technique which utilizes an adaptive signal processing for feature generation, coupled with a multilayered merual network for pattern recognition. The cutting force signal in face milling operation was modeled by a low order discrete autoregressive model, shere parameters were estimated recursively at each sampling instant using a parameter adaptation algorithm based on an RLS(recursive least square) method with discounted measurements. The influences of the adaptation algorithm parameters as well as some considerations for modeling on the estimation results are discussed. The sensitivity of the extimated model parameters to the tool state(new and worn tool)is presented, and the application of a multilayered neural network to tool state monitoring using the previously generated features is also demonstrated with a high success rate. The methodology turned out to be quite suitable for in-process tool wear monitoring in the sense that the model parameters are effective as tool state features in milling operation and that the classifier successfully maps the sensors data to correct output decision.

  • PDF

Comparison of long-term forecasting performance of export growth rate using time series analysis models and machine learning analysis (시계열 분석 모형 및 머신 러닝 분석을 이용한 수출 증가율 장기예측 성능 비교)

  • Seong-Hwi Nam
    • Korea Trade Review
    • /
    • v.46 no.6
    • /
    • pp.191-209
    • /
    • 2021
  • In this paper, various time series analysis models and machine learning models are presented for long-term prediction of export growth rate, and the prediction performance is compared and reviewed by RMSE and MAE. Export growth rate is one of the major economic indicators to evaluate the economic status. And It is also used to predict economic forecast. The export growth rate may have a negative (-) value as well as a positive (+) value. Therefore, Instead of using the ReLU function, which is often used for time series prediction of deep learning models, the PReLU function, which can have a negative (-) value as an output value, was used as the activation function of deep learning models. The time series prediction performance of each model for three types of data was compared and reviewed. The forecast data of long-term prediction of export growth rate was deduced by three forecast methods such as a fixed forecast method, a recursive forecast method and a rolling forecast method. As a result of the forecast, the traditional time series analysis model, ARDL, showed excellent performance, but as the time period of learning data increases, the performance of machine learning models including LSTM was relatively improved.

Low-Complexity VFF-RLS Algorithm Using Normalization Technique (정규화 기법을 이용한 낮은 연산량의 가변 망각 인자 RLS 기법)

  • Lee, Seok-Jin;Lim, Jun-Seok;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.18-23
    • /
    • 2010
  • The RLS (Recursive Least Squares) method is a broadly used adaptive algorithm for signal processing in electronic engineering. The RLS algorithm shows a good performance and a fast adaptation within a stationary environment, but it shows a Poor performance within a non-stationary environment because the method has a fixed forgetting factor. In order to enhance 'tracking' performances, BLS methods with an adaptive forgetting factor had been developed. This method shows a good tracking performance, however, it suffers from heavy computational loads. Therefore, we propose a modified AFF-RLS which has relatively low complexity m this paper.