• 제목/요약/키워드: recurrent neural network model

검색결과 353건 처리시간 0.025초

시계열 자료의 예측을 위한 자료 기반 신경망 모델에 관한 연구: 한강대교 수위예측 적용 (A Study on the Data Driven Neural Network Model for the Prediction of Time Series Data: Application of Water Surface Elevation Forecasting in Hangang River Bridge)

  • 유형주;이승오;최서혜;박문형
    • 한국방재안전학회논문집
    • /
    • 제12권2호
    • /
    • pp.73-82
    • /
    • 2019
  • 최근 이상기후로 인한 집중호우에 따른 하천변 사회기반시설의 침수피해가 증가하고 있으며, 침수 가능성 여부에 대한 신속한 예 경보가 필요한 실정이다. 일반적인 홍수 예 경보는 하천수위를 이용하고 있으며, 수치모형을 이용하여 하천수위를 예측하는 연구가 대부분이었다. 그러나 수치모형을 이용한 하천수위 예측은 결과가 정확한 반면 수치모의 시간이 오래 소요된다는 한계점이 있어 최근에는 인공신경망 등을 적용한 자료기반의 수위예측 모형이 많이 이용되고 있다. 하지만 기존의 인공신경망을 활용한 수위예측 연구는 시간적 매개변수를 고려하지 못하였다는 한계점이 존재한다. 본 연구에서는 시간적 매개변수(Time delay= 2시간)를 고려한 NARX 신경망 모형을 사용하여 한강대교의 수위를 예측하였다. 또한 NARX 모형의 적합성을 판단하기 위하여 인공신경망(ANN) 모형과, 순환신경망(RNN)모형의 결과와 비교하였다. 2009년에서 2018년까지 10년간의 수문자료를 이용하여 70%를 학습시키고 검정과 평가에 15%를 사용하여 2018년의 한강대교 3시간 후 수위를 예측한 결과 평균제곱근오차(RMSE)의 경우 ANN, RNN, NARX model이 각각 0.20 m, 0.11 m, 0.09 m, 평균절대오차(MAE)의 경우, 각각 0.12 m, 0.06 m, 0.05 m, 첨두수위 오차(Peak Error)는 각각 1.56 m, 0.55 m, 0.10 m로 나타났다. 연구 대상지역에 대한 시간적 매개변수를 고려한 예측 결과의 오차분석을 통하여 NARX 신경망 모형을 사용하는 것이 수위예측 모형 구축이 가장 적합한 것으로 나타났다. 이는 NARX 신경망 모형이 과거의 입력자료를 고려함으로써 시계열 자료의 변동 추세도 학습 할 수 있으며, 또한 모형 내 활성함수를 쌍곡선탄젠트(Hyperbolic tangent) 및 Rectified Linear Unit(ReLU) 함수를 사용하여 고수위 예측 시에도 정확한 예측 값을 도출할 수 있기 때문이다. 그러나 NARX 신경망 모형은 시퀀스 길이가 길어짐에 따라 기울기 소실문제(Vanishing gradient)가 발생하는 한계점이 있어 향후에는 이를 보완한 LSTM(Long Short Term Model)모형을 이용하여 수위예측의 정확도를 검토하고자 한다.

딥러닝을 이용한 언어별 단어 분류 기법 (Language-based Classification of Words using Deep Learning)

  • 듀크;다후다;조인휘
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.411-414
    • /
    • 2021
  • One of the elements of technology that has become extremely critical within the field of education today is Deep learning. It has been especially used in the area of natural language processing, with some word-representation vectors playing a critical role. However, some of the low-resource languages, such as Swahili, which is spoken in East and Central Africa, do not fall into this category. Natural Language Processing is a field of artificial intelligence where systems and computational algorithms are built that can automatically understand, analyze, manipulate, and potentially generate human language. After coming to discover that some African languages fail to have a proper representation within language processing, even going so far as to describe them as lower resource languages because of inadequate data for NLP, we decided to study the Swahili language. As it stands currently, language modeling using neural networks requires adequate data to guarantee quality word representation, which is important for natural language processing (NLP) tasks. Most African languages have no data for such processing. The main aim of this project is to recognize and focus on the classification of words in English, Swahili, and Korean with a particular emphasis on the low-resource Swahili language. Finally, we are going to create our own dataset and reprocess the data using Python Script, formulate the syllabic alphabet, and finally develop an English, Swahili, and Korean word analogy dataset.

RGBD 카메라 기반의 Human-Skeleton Keypoints와 2-Stacked Bi-LSTM 모델을 이용한 낙상 탐지 (Fall Detection Based on 2-Stacked Bi-LSTM and Human-Skeleton Keypoints of RGBD Camera)

  • 신병근;김응호;이상우;양재영;김원겸
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권11호
    • /
    • pp.491-500
    • /
    • 2021
  • 본 연구에서는 MS Kinect v2 RGBD 카메라 기반의 Human-Skeleton Keypoints와 2-Stacked Bi-LSTM 모델을 이용하여 낙상 행위를 탐지하는 방법을 제안한다. 기존의 연구는 RGB 영상에서 OpenPose 등의 딥러닝 모델을 이용하여 골격 정보를 추출한 후 LSTM, GRU 등의 순환신경망 모델을 이용해 인식을 수행하였다. 제안한 방법은 카메라로부터 골격정보를 바로 전달 받아 가속도 및 거리의 2개의 시계열 특징을 추출한 후 2-Stacked Bi-LSTM 모델을 이용하여 낙상 행위를 인식하였다. 어깨, 척추, 골반 등 주요 골격을 대상으로 중심관절을 구하고 이 중심관절의 움직임 가속도와 바닥과의 거리를 특징으로 제안하였다. 추출된 특징은 Stacked LSTM, Bi-LSTM 등의 모델과 성능비교를 수행하였고 GRU, LSTM 등의 기존연구에 비해 향상된 검출 성능을 실험을 통해 증명하였다.

유도형 전력선 통신과 연동된 SSD 기반 화재인식 및 알림 시스템 (SSD-based Fire Recognition and Notification System Linked with Power Line Communication)

  • 양승호;손경락;정재환;김현식
    • 전기전자학회논문지
    • /
    • 제23권3호
    • /
    • pp.777-784
    • /
    • 2019
  • 인적이 드문 한적한 곳이나 산악 지역에서 화재가 발생 하였을 때 화재 상황을 정확하게 파악하고 적절한 초동 대처를 한다면 피해를 최소화할 수 있으므로 사전 화재인지시스템과 자동알림시스템이 요구된다. 본 연구에서는 객체인식을 위한 딥러닝 알고리즘 중 Faster-RCNN 및 SSD(single shot multibox detecter)을 사용한 화재 인식시스템을 전력선 통신과 연동하여 자동알림시스템을 시연하였으며 향 후 고압송전망을 이용한 산불화재 감시에 응용 가능함을 제시하였다. 학습된 모델을 장착한 라즈베리파이에 파이카메라를 설치하여 화재 영상인식을 수행하였으며, 검출된 화재영상은 유도형 전력선 통신망을 통하여 모니터링 PC로 전송하였다. 학습 모델별 라즈베리파이에서의 초당 프레임 율은 Faster-RCNN의 경우 0.05 fps, SSD의 경우 1.4 fps로 SSD의 처리속도가 Faster-RCNN 보다 28배 정도 빨랐다.

CAB: Classifying Arrhythmias based on Imbalanced Sensor Data

  • Wang, Yilin;Sun, Le;Subramani, Sudha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권7호
    • /
    • pp.2304-2320
    • /
    • 2021
  • Intelligently detecting anomalies in health sensor data streams (e.g., Electrocardiogram, ECG) can improve the development of E-health industry. The physiological signals of patients are collected through sensors. Timely diagnosis and treatment save medical resources, promote physical health, and reduce complications. However, it is difficult to automatically classify the ECG data, as the features of ECGs are difficult to extract. And the volume of labeled ECG data is limited, which affects the classification performance. In this paper, we propose a Generative Adversarial Network (GAN)-based deep learning framework (called CAB) for heart arrhythmia classification. CAB focuses on improving the detection accuracy based on a small number of labeled samples. It is trained based on the class-imbalance ECG data. Augmenting ECG data by a GAN model eliminates the impact of data scarcity. After data augmentation, CAB classifies the ECG data by using a Bidirectional Long Short Term Memory Recurrent Neural Network (Bi-LSTM). Experiment results show a better performance of CAB compared with state-of-the-art methods. The overall classification accuracy of CAB is 99.71%. The F1-scores of classifying Normal beats (N), Supraventricular ectopic beats (S), Ventricular ectopic beats (V), Fusion beats (F) and Unclassifiable beats (Q) heartbeats are 99.86%, 97.66%, 99.05%, 98.57% and 99.88%, respectively. Unclassifiable beats (Q) heartbeats are 99.86%, 97.66%, 99.05%, 98.57% and 99.88%, respectively.

Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구 (A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm)

  • 최지혜;김민승;이찬호;최정환;이정희;성태응
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.131-145
    • /
    • 2020
  • 산업혁신의 흐름에 발맞추어 다양한 분야에서 활용되고 있는 IoT 기술은 빅데이터의 접목을 통한 새로운 비즈니스 모델의 창출 및 사용자 친화적 서비스 제공의 핵심적인 요소로 부각되고 있다. 사물인터넷이 적용된 디바이스에서 누적된 데이터는 사용자 환경 및 패턴 분석을 통해 맞춤형 지능 시스템을 제공해줄 수 있어 편의 기반 스마트 시스템 구축에 다방면으로 활용되고 있다. 최근에는 이를 공공영역 혁신에 확대 적용하여 CCTV를 활용한 교통 범죄 문제 해결 등 스마트시티, 스마트 교통 등에 활용하고 있다. 그러나 이미지 데이터를 활용하는 기존 연구에서는 개인에 대한 사생활 침해 문제 및 비(非)일반적 상황에서 객체 감지 성능이 저하되는 한계가 있다. 본 연구에 활용된 IoT 디바이스 기반의 센서 데이터는 개인에 대한 식별이 불필요해 사생활 이슈로부터 자유로운 데이터로, 불특정 다수를 위한 지능형 공공서비스 구축에 효과적으로 활용될 수 있다. 대다수의 국민들이 일상적으로 활용하는 도시철도에서의 지능형 보행자 트래킹 시스템에 IoT 기반의 적외선 센서 디바이스를 활용하고자 하였으며 센서로부터 측정된 온도 데이터를 실시간 송출하고, CNN-LSTM(Convolutional Neural Network-Long Short Term Memory) 알고리즘을 활용하여 구간 내 보행 인원의 수를 예측하고자 하였다. 실험 결과 MLP(Multi-Layer Perceptron) 및 LSTM(Long Short-Term Memory), RNN-LSTM(Recurrent Neural Network-Long Short Term Memory)에 비해 제안한 CNN-LSTM 하이브리드 모형이 가장 우수한 예측성능을 보임을 확인하였다. 본 논문에서 제안한 디바이스 및 모델을 활용하여 그간 개인정보와 관련된 법적 문제로 인해 서비스 제공이 미흡했던 대중교통 내 실시간 모니터링 및 혼잡도 기반의 위기상황 대응 서비스 등 종합적 메트로 서비스를 제공할 수 있을 것으로 기대된다.

리뷰 데이터와 제품 정보를 이용한 멀티모달 감성분석 (Multimodal Sentiment Analysis Using Review Data and Product Information)

  • 황호현;이경찬;유진이;이영훈
    • 한국전자거래학회지
    • /
    • 제27권1호
    • /
    • pp.15-28
    • /
    • 2022
  • 최근 의류 등의 특정 쇼핑몰의 온라인 시장이 크게 확대되면서, 사용자의 리뷰를 활용하는 것이 주요한 마케팅 방안이 되었다. 이를 이용한 감성분석에 대한 연구들도 많이 진행되고 있다. 감성분석은 사용자의 리뷰를 긍정과 부정 그리고 필요에 따라서 중립으로 분류하는 방법이다. 이 방법은 크게 머신러닝 기반의 감성분석과 사전기반의 감성분석으로 나눌 수 있다. 머신러닝 기반의 감성분석은 사용자의 리뷰 데이터와 그에 대응하는 감성 라벨을 이용해서 분류 모델을 학습하는 방법이다. 감성분석 분야의 연구가 발전하면서 리뷰와 함께 제공되는 이미지나 영상 데이터 등을 함께 고려하여 학습하는 멀티모달 방식의 모델들이 연구되고 있다. 리뷰 데이터에서 제품의 카테고리와 사용자별로 사용되는 단어 등의 특징이 다르다. 따라서 본 논문에서는 리뷰데이터와 제품 정보를 동시에 고려하여 감성분석을 진행한다. 리뷰를 분류하는 모델로는 기본 순환신경망 구조에서 Gate 방식을 도입한 Gated Recurrent Unit(GRU), Long Short-Term Memory(LSTM) 그리고 Self Attention 기반의 Multi-head Attention 모델, Bidirectional Encoder Representation from Transformer(BERT)를 사용해서 각각 성능을 비교하였다. 제품 정보는 모두 동일한 Multi-Layer Perceptron(MLP) 모델을 이용하였다. 본 논문에서는 사용자 리뷰를 활용한 Baseline Classifier의 정보와 제품 정보를 활용한 MLP모델의 결과를 결합하는 방법을 제안하며 실제 데이터를 통해 성능의 우수함을 보인다.

LSTM을 이용한 표면 근전도 분석을 통한 서로 다른 손가락 움직임 분류 정확도 향상 (Improvement of Classification Accuracy of Different Finger Movements Using Surface Electromyography Based on Long Short-Term Memory)

  • 신재영;김성욱;이윤성;이형탁;황한정
    • 대한의용생체공학회:의공학회지
    • /
    • 제40권6호
    • /
    • pp.242-249
    • /
    • 2019
  • Forearm electromyography (EMG) generated by wrist movements has been widely used to develop an electrical prosthetic hand, but EMG generated by finger movements has been rarely used even though 20% of amputees lose fingers. The goal of this study is to improve the classification performance of different finger movements using a deep learning algorithm, and thereby contributing to the development of a high-performance finger-based prosthetic hand. Ten participants took part in this study, and they performed seven different finger movements forty times each (thumb, index, middle, ring, little, fist and rest) during which EMG was measured from the back of the right hand using four bipolar electrodes. We extracted mean absolute value (MAV), root mean square (RMS), and mean (MEAN) from the measured EMGs for each trial as features, and a 5x5-fold cross-validation was performed to estimate the classification performance of seven different finger movements. A long short-term memory (LSTM) model was used as a classifier, and linear discriminant analysis (LDA) that is a widely used classifier in previous studies was also used for comparison. The best performance of the LSTM model (sensitivity: 91.46 ± 6.72%; specificity: 91.27 ± 4.18%; accuracy: 91.26 ± 4.09%) significantly outperformed that of LDA (sensitivity: 84.55 ± 9.61%; specificity: 84.02 ± 6.00%; accuracy: 84.00 ± 5.87%). Our result demonstrates the feasibility of a deep learning algorithm (LSTM) to improve the performance of classifying different finger movements using EMG.

조건적 제한된 볼츠만머신을 이용한 중기 전력 수요 예측 (Mid-Term Energy Demand Forecasting Using Conditional Restricted Boltzmann Machine)

  • 김수현;선영규;이동구;심이삭;황유민;김현수;김형석;김진영
    • 전기전자학회논문지
    • /
    • 제23권1호
    • /
    • pp.127-133
    • /
    • 2019
  • 미래에 스마트 그리드 도입을 위해 전력수요예측은 중요한 연구 분야 중 하나이다. 하지만 전력데이터는 많은 외부적 요소들에 영향을 받기 때문에 예측하기 어렵다. 기존의 전력수요예측 방법들은 가공되지 않은 전력데이터를 그대로 이용하기 때문에 정확도 높은 예측을 하는데 한계가 있어왔다. 본 논문에서는 가공되지 않은 전력데이터를 이용하는 전력수요예측의 문제를 해결하기 위해 확률기반 학습알고리즘을 제안한다. 확률 모델은 전력데이터의 확률적 특성을 분석하기에 적합하다. 제안한 모델의 중기 전력수요예측 성능을 비교하기 위해 신경망 네트워크 중 하나인 순환신경망과 성능 비교를 해보았다. 매사추세츠 대학에서 제공한 전력데이터를 이용하여 성능 비교를 한 결과 본 논문에서 제안한 확률기반 학습알고리즘이 중기 수요예측에 더 좋은 성능을 나타냄을 확인하였다.

PredFeed Net: 먹이 배급의 자동화를 위한 GRU 기반 먹이 배급량 예측 모델 (PredFeed Net: GRU-based feed ration prediction model for automation of feed rationing)

  • 심규정;손수락;정이나
    • 인터넷정보학회논문지
    • /
    • 제25권2호
    • /
    • pp.49-55
    • /
    • 2024
  • 본 논문은 물고기 양식 전문가의 먹이 배급을 모방하는 신경망 모델인 PredFeed Net을 제안한다. PredFeed Net은 기존의 먹이 배급 자동화 시스템과 달리, 전문가의 먹이 배급 패턴을 학습하는 방식으로 먹이 배급량을 예측한다. 이는 실제 수조에서 환경에 따른 먹이 배급 변수를 바꾸며 실험할 필요 없이, 기존의 환경 데이터와 먹이 배급 전문가의 먹이 배급 기록만으로 학습이 가능하다는 이점이 있다. 학습이 완료된 PredFeed Net은 현재 환경이나 어류의 상태를 통해 다음 먹이 배급량을 예측한다. 먹이 배급량 예측은 먹이 배급 자동화에 필요한 요소이며, 먹이 배급 자동화는 스마트 양식업이나 아쿠아포닉스 시스템 같은 최신 양식어업에 발전에 기여한다.