• Title/Summary/Keyword: rectangular hyperbola model

Search Result 8, Processing Time 0.017 seconds

Development and Validation of a Canopy Photosynthetic Rate Model of Lettuce Using Light Intensity, CO2 Concentration, and Day after Transplanting in a Plant Factory (광도, CO2 농도 및 정식 후 생육시기에 따른 식물공장 재배 상추의 군락 광합성 모델 확립)

  • Jung, Dae Ho;Kim, Tae Young;Cho, Young-Yeol;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.27 no.2
    • /
    • pp.132-139
    • /
    • 2018
  • The photosynthetic rate is an indicator of the growth state and growth rate of crops and is an important factor in constructing efficient production systems. The objective of this study was to develop a canopy photosynthetic rate model of romaine lettuce using the three variables of $CO_2$ concentration, light intensity, and growth stage. The canopy photosynthetic rates of the lettuce were measured at five different $CO_2$ concentrations ($600-2,200{\mu}mol{\cdot}mol^{-1}$), five light intensities ($60-340{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$), and four growth stages (5-20 days after transplanting) in three closed acrylic chambers ($1.0{\times}0.8{\times}0.5m$). A simple multiplication model expressed by multiplying three single-variable models and the modified rectangular hyperbola model including photochemical efficiency, carboxylation conductance, and dark respiration, which vary with growth stage, were also considered. In validation, the $R^2$ value was 0.923 in the simple multiplication model, while it was 0.941 in the modified rectangular hyperbola model. The modified rectangular hyperbola model appeared to be more appropriate than the simple multiplication model in expressing canopy photosynthetic rates. The model developed in this study will contribute to the determination of an optimal $CO_2$ concentration and light intensity with the growth stage of lettuce in plant factories.

Development of A Three-Variable Canopy Photosynthetic Rate Model of Romaine Lettuce (Lactuca sativa L.) Grown in Plant Factory Modules Using Light Intensity, Temperature, and Growth Stage (광도, 온도, 생육 시기에 따른 식물공장 모듈 재배 로메인 상추의 3 변수 군락 광합성 모델 개발)

  • Jung, Dae Ho;Yoon, Hyo In;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.268-275
    • /
    • 2017
  • The photosynthetic rates of crops depend on growth environment factors, such as light intensity and temperature, and their photosynthetic efficiencies vary with growth stage. The objective of this study was to compare two different models expressing canopy photosynthetic rates of romaine lettuce (Lactuca sativa L., cv. Asia Heuk romaine) using three variables of light intensity, temperature, and growth stage. The canopy photosynthetic rates of the plants were measured 4, 7, 14, 21, and 28 days after transplanting at closed acrylic chambers ($1.0{\times}0.8{\times}0.5m$) using light-emitting diodes, in which indoor temperature and light intensity were designed to change from 19 to $28^{\circ}C$ and 50 to $500{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. At an initial $CO_2$ concentration of $2,000{\mu}mol{\cdot}mol^{-1}$, the canopy photosynthetic rate began to be calculated with $CO_2$ decrement over time. A simple multiplication model expressed by simply multiplying three single-variable models and a modified rectangular hyperbola model were compared. The modified rectangular hyperbola model additionally included photochemical efficiency, carboxylation conductance, and dark respiration which vary with temperature and growth stage. In validation, $R^2$ value was 0.849 in the simple multiplication model, while it increased to 0.861 in the modified rectangular hyperbola model. It was found that the modified rectangular hyperbola model was more suitable than the simple multiplication model in expressing the canopy photosynthetic rates affected by environmental factors (light Intensity and temperature) and growth factor (growth stage) in plant factory modules.

Development of Models for Estimating Growth of Quinoa (Chenopodium quinoa Willd.) in a Closed-Type Plant Factory System (완전제어형 식물공장에서 퀴노아 (Chenopodium quinoa Willd.)의 생장을 예측하기 위한 모델 개발)

  • Austin, Jirapa;Cho, Young-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.326-331
    • /
    • 2018
  • Crop growth models are useful tools for understanding and integrating knowledge about crop growth. Models for predicting plant height, net photosynthesis rate, and plant growth of quinoa (Chenopodium quinoa Willd.) as a leafy vegetable in a closed-type plant factory system were developed using empirical model equations such as linear, quadratic, non-rectangular hyperbola, and expolinear equations. Plant growth and yield were measured at 5-day intervals after transplanting. Photosynthesis and growth curve models were calculated. Linear and curve relationships were obtained between plant heights and days after transplanting (DAT), however, accuracy of the equation to estimate plant height was linear equation. A non-rectangular hyperbola model was chosen as the response function of net photosynthesis. The light compensation point, light saturation point, and respiration rate were 29, 813 and $3.4{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. The shoot fresh weight showed a linear relationship with the shoot dry weight. The regression coefficient of the shoot dry weight was 0.75 ($R^2=0.921^{***}$). A non-linear regression was carried out to describe the increase in shoot dry weight of quinoa as a function of time using an expolinear equation. The crop growth rate and relative growth rate were $22.9g{\cdot}m^{-2}{\cdot}d^{-1}$ and $0.28g{\cdot}g^{-1}{\cdot}d^{-1}$, respectively. These models can accurately estimate plant height, net photosynthesis rate, shoot fresh weight, and shoot dry weight of quinoa.

Competitiveness and Yield Loss Prediction of Water-seeded Rice by Densities of Scirpus juncoides Roxb (담수직파논 올챙이고랭이 발생밀도에 따른 경합 및 쌀 수량예측)

  • Won, Jong-Gun;Ahn, Duok-Jong;Kim, Se-Jong;Kwon, Oh-Do;Moon, Byeong-Chul;Park, Jae-Eup
    • Korean Journal of Weed Science
    • /
    • v.30 no.1
    • /
    • pp.43-49
    • /
    • 2010
  • This study was conducted to predict the rice yield loss and determine the economic threshold levels for water direct seeded rice from competition of the most serious weeds, Scirpus juncoides Roxb. (bulrush) and Echinochlor crusgalli L. (barnyardgrass) in Daegu of Korea. To predict crop yield as a function of weed density used a rectangular hyperbola, and determine their economic threshold levels used the equation developed by Cousens. The rice yield loss model of S. juncoides was predicted as y = 466 / (1+0.00188x), $R^2$ = 0.933 and that of E. crusgalli was y = 458 / (1+0.02402x), $R^2$ = 0.973. In comparison of the competitiveness represented by parameter ${\beta}$, it was 0.001884 in S. juncoides and 0.02402 in E. crusgalli. Economic threshold calculated using Cousens' equation was negatively related to the competitiveness of weed. So that the economic threshold of S. juncoides was 13.4 and that of E. crusgalli was 1.07 plants per $m^2$.

Modeling the Competition Effect of Sagittaria trifolia and Monochoria vaginalis Weed Density on Rice in Transplanted Rice Cultivation (벼 기계이앙재배에서 벼와 물달개비 및 벗풀 경합에 따른 예측모델)

  • Moon, Byeong-Chul;Kwon, Oh-Do;Cho, Seung-Hyun;Lee, Sun-Gye;Won, Jong-Gun;Lee, In-Yong;Park, Jae-Eup;Kim, Do-Soon
    • Korean Journal of Weed Science
    • /
    • v.32 no.3
    • /
    • pp.188-194
    • /
    • 2012
  • Field experiments were conducted to investigate the competition relationships of main paddy weeds with transplanted rice grown in paddy conditions. Data were used to predict crop yield as a function of weed density using a rectangular hyperbola model and determine weed economic threshold (ET) levels. The rectangular hyperbola (equation 2) was fitted to rice yield to estimate weed-free rice yield ($Y_o$) and weed competitivity (${\beta}$). Its competitivity for M. vaginalis was 0.0007445, 0.0005713, 0.000988 and 0.0008846 in Daejeon, Suwon, Iksan and Naju, respectively. The competitivity at harvest represented by parameter ${\beta}$ ranged from 0.001611 in Naju to 0.002437 in Iksan for S. trifolia. The ET levels of main paddy weeds in machine transplanted rice cultivation were well estimated based on the herbicides applied and its application cost. Therefore, our results can be used to support decision-making on herbicide application for weed management in transplanted rice cultivation.

The Growth and Yield of Soybean as Affected by Competitive Density of Cuscuta pentagona (미국실새삼 발생밀도가 콩 생육 및 수량에 미치는 영향)

  • Song, Seok-Bo;Lee, Jae-Saeng;Kang, Jong-Rae;Ko, Jee-Yeon;Seo, Myung-Chul;Woo, Koan-Sik;Oh, Byeong-Geun;Nam, Min-Hee
    • Korean Journal of Weed Science
    • /
    • v.30 no.4
    • /
    • pp.390-395
    • /
    • 2010
  • This study was conducted to predict reduction of soybean yield as affected by different densities of Cuscuta pentagona. All data were fitted to Cousens' rectangular hyperbola model to estimate parameters for predicting soybean yield loss. The yield of soybean in the various densities (1 to 48 plants $m^{-2}$) of C. pentagona reduced by 80.3 to 99.7%, respectively. Among yield components, number of pods was the most significantly influenced by weed interferences. The prediction model for soybean yield as affected by weed competition was as follows: Y= 274.6783/(1+4.3522X), $r^2$=0.999 in C. pentagona. Economic threshold levels calculated using cousens' equation was 0.004 plants $m^{-2}$ in C. pentagona.

Effect of Densities of Echinochloa crus-galli and Cyperus serotinus in Direct-seeding Flooded Rice on Rice Yield and Quality, and Economic Threshold Level of the Weeds (벼 담수직파에서 피와 너도방동사니의 발생밀도에 따른 쌀 수량, 미질 및 경제적 허용 한계밀도 설정)

  • Kim, Sang-Kuk;Kim, Su-Yong;Won, Jong-Gun;Shin, Jong-Hee;Kim, Hak-Yoon
    • Korean Journal of Weed Science
    • /
    • v.32 no.1
    • /
    • pp.44-51
    • /
    • 2012
  • This study was conducted to predict the rice yield loss and to determine the economic threshold levels for direct-seeding flooded rice cultivation from competition to the most serious perennial weeds, Cyperus serotinus Rottb. and Echinochloa crus-galli L. The rice yield loss model of C. serotinus and E. crus-galli were predicted as Y = 560 kg/(1+0.001883x), $r^2$=0.933, and Y = 507 kg/(1+0.001734x), $r^2$=0.867, respectively. In comparison of the competitiveness represented by parameter ${\beta}$, it was 0.001883 in C. serotinus and 0.001734 in E. crus-galli, respectively. Economic thresholds calculated using Cousens' equation were negatively related with the competitiveness of weed. The economic thresholds of C. serotinus and E. crus-galli were 15.5 and 2.3 plants per $m^2$, respectively.

Time Change in Spatial Distributions of Light Interception and Photosynthetic Rate of Paprika Estimated by Ray-tracing Simulation (광 추적 시뮬레이션에 의한 시간 별 파프리카의 수광 및 광합성 속도 분포 예측)

  • Kang, Woo Hyun;Hwang, Inha;Jung, Dae Ho;Kim, Dongpil;Kim, Jaewoo;Kim, Jin Hyun;Park, Kyoung Sub;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.279-285
    • /
    • 2019
  • To estimate daily canopy photosynthesis, accurate estimation of canopy light interception according to a daily solar position is needed. However, this process needs a lot of cost, time, manpower, and difficulty when measuring manually. Various modeling approaches have been applied so far, but it was difficult to accurately estimate light interception by conventional methods. The objective of this study is to estimate the spatial distributions of light interception and photosynthetic rate of paprika with time by using 3D-scanned plant models and optical simulation. Structural models of greenhouse paprika were constructed with a portable 3D scanner. To investigate the change in canopy light interception by surrounding plants, the 3D paprika models were arranged at $1{\times}1$ and $9{\times}9$ isotropic forms with a distance of 60 cm between plants. The light interception was obtained by optical simulation, and the photosynthetic rate was calculated by a rectangular hyperbola model. The spatial distributions of canopy light interception of the 3D paprika model showed different patterns with solar altitude at 9:00, 12:00, and 15:00. The total canopy light interception decreased with an increase of surrounding plants like an arrangement of $9{\times}9$, and the decreasing rate was lowest at 12:00. The canopy photosynthetic rate showed a similar tendency with the canopy light interception, but its decreasing rate was lower than that of the light interception due to the saturation of photosynthetic rate of upper leaves of the plants. In this study, by using the 3D-scanned plant model and optical simulation, it was possible to analyze the light interception and photosynthesis of plant canopy under various conditions, and it can be an effective way to estimate accurate light interception and photosynthesis of plants.