• 제목/요약/키워드: rectangular group

검색결과 134건 처리시간 0.022초

Interfacial Friction Factors for Air-Water Co-current Stratified Flow in Inclined Channels

  • Choi, Ki-Yong;No, Hee-Cheon
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.481-486
    • /
    • 1997
  • The interfacial shear stress is experimentally investigated for co-current air-water stratified flow in inclined rectangular channels having a length of 1854mm, width of 120mm and height of 40mm at almost atmospheric pressure. Experiments are carried out in several inclinations from $0^{\circ}\;up\;to\;10^{\circ}$. The local film thickness and the wave height are measured at three locations, i.e., L/H = 8,23, and 40. According to the inclination angle, the experimental data are categorized into two groups; nearly horizontal data group ($0^{\circ}\;{\leq}\;{\theta}\;{\leq}\;0.7^{\circ}$), and inclined channel data group ($0.7^{\circ}\;{\leq}\;{\theta}\;{\leq}\;10^{\circ}$). Experimental observations for nearly horizontal data group show that the flow is not fully developed due to the water level gradient and the hydraulic jump within the channel. For the inclined channel data group, a dimensionless wave height, $\Delta$h/h, is empirically correlated in terms of $Re_{G}$ and h/H. A modified root-mean-square wave height is proposed to consider the effects of the interfacial and wave propagation velocities. It is found that an equivalent roughness has a linear relationship with the modified root-mean-square wave height and its relationship is independent of the inclination.

  • PDF

복합재 격자구조물의 점검창 형상에 따른 구조안전성 해석 (Structure Safety Analysis of Composite Lattice Structure with Inspection Window)

  • 김동건;배주찬;손조화;이상우
    • 한국추진공학회지
    • /
    • 제22권6호
    • /
    • pp.94-103
    • /
    • 2018
  • 발사체 및 유도무기 기체에 사용되는 복합재 격자구조물은 구조물에 작용하는 하중을 고려하여 최소한의 두께와 무게로 설계되는 구조물이다. 이를 위하여 실리콘 몰드에 탄소섬유를 와인딩하는 공정으로 격자구조물을 만들며, 이때 발사체 및 유도무기 기체 내부의 장비 등을 점검하기 위하여 점검창을 설치하는 것이 일반적으로 요구된다. 본 논문에서는 필라멘트 와인딩 공정으로 제작된 실린더형 격자구조물에 대하여 압축시험을 수행하고, 이 구조물에 대한 유한요소해석을 수행하여 얻은 해석 결과를 설치된 격자구조물에 대하여 유한요소해석을 수행하였다. 또한 구조물의 리브(Rib)와 노트(Knot)의 파손강도를 통해 육각형 점검창의 두께 및 위치를 변수로 선정하여 수행한 유한요소해석 결과는 다음과 같다; (1) 육각형 점검창의 안전계수가 사각형 점검창 보다 높게 계산되었으며, (2) 수직 점검창이 상단 헬리컬 리브의 중간에 위치할 때 안전계수가 높게 계산되었고, (3) 구조안전성 확보를 위하여 점검창의 두께를 증가시킬 경우 구조물의 불연속 부분에 응력집중이 발생하므로 유한요소 해석을 통해 안전계수가 가장 높은 점검창 형상을 선정해야 한다.

Repair bond strengths of non-aged and aged resin nanoceramics

  • Subasi, Meryem Gulce;Alp, Gulce
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권5호
    • /
    • pp.364-370
    • /
    • 2017
  • PURPOSE. To explore the influence of different surface conditionings on surface changes and the influence of surface treatments and aging on the bond strengths of composites to non-aged and aged resin nanoceramics. MATERIALS AND METHODS. Rectangular-shaped non-aged and aged (5000 thermocycles) resin nanoceramic specimens (Lava Ultimate) (n=63, each) were divided into 3 groups according to surface treatments (untreated, air abrasion, or silica coating) (n=21). The surface roughness was measured and scanning electron microscopy was used to examine one specimen from each group. Afterwards, the specimens were repaired with a composite resin (Filtek Z550) and half were sent for aging (5000 thermocycles, n=10, each). Shear bond strengths and failure types were evaluated. Roughness and bond strength were investigated by two- and three-way analysis of variance, respectively. The correlation between the roughness and bond strength was investigated by Pearson's correlation test. RESULTS. Surface-treated samples had higher roughness compared with the untreated specimens (P=.000). For the non-aged resin nanoceramic groups, aging was a significant factor for bond strength; for the aged resin nanoceramic groups, surface treatment and aging were significant factors. The failures were mostly adhesive after thermal cycling, except in the non-aged untreated group and the aged air-abraded group, which had mostly mixed failures. Roughness and bond strength were positively correlated (P=.003). CONCLUSION. Surface treatment is not required for the repair of non-aged resin nanoceramic; for the repair of aged resin nanoceramic restorations, air abrasion is recommended.

Comparison of the bond strength of ceramics to Co-Cr alloys made by casting and selective laser melting

  • Lawaf, Shirin;Nasermostofi, Shahbaz;Afradeh, Mahtasadat;Azizi, Arash
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권1호
    • /
    • pp.52-56
    • /
    • 2017
  • PURPOSE. Considering the importance of metal-ceramic bond, the present study aimed to compare the bond strength of ceramics to cobalt-chrome (Co-Cr) alloys made by casting and selective laser melting (SLM). MATERIALS AND METHODS. In this in-vitro experimental study, two sample groups were prepared, with one group comprising of 10 Co-Cr metal frameworks fabricated by SLM method and the other of 10 Co-Cr metal frameworks fabricated by lost wax cast method with the dimensions of $0.5{\times}3{\times}25\;mm$ (following ISO standard 9693). Porcelain with the thickness of 1.1 mm was applied on a $3{\times}8-mm$ central rectangular area of each sample. Afterwards, bond strengths of the samples were assessed with a Universal Testing Machine. Statistical analysis was performed with Kolmogorov-Smirnov test and T-test. RESULTS. Bond strength in the conventionally cast group equaled $74.94{\times}16.06\;MPa$, while in SLM group, it equaled $69.02{\times}5.77\;MPa$. The difference was not statistically significant ($P{\leq}.05$). CONCLUSION. The results indicated that the bond strengths between ceramic and Co-Cr alloys made by casting and SLM methods were not statistically different.

Reactor core analysis through the SP3-ACMFD approach. Part I: Static solution

  • Mirzaee, Morteza Khosravi;Zolfaghari, A.;Minuchehr, A.
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.223-229
    • /
    • 2020
  • The present work proposes a solution to the static Boltzmann transport equation approximated by the simplified P3 (SP3) on angular, and the analytic coarse mesh finite difference (ACMFD) for spatial variables. Multi-group SP3-ACMFD equations in 3D rectangular geometry are solved using the GMRES solution technique. As the core time dependent analysis necessitates the solution of an eigenvalue problem for an initial condition, this work is hence devoted to development and verification of the proposed static SP3-ACMFD solver. A 3D multi-group static diffusion solver is also developed as a byproduct of this work to assess the improvement achieved using the SP3 technique. Static results are then compared against transport benchmarks to assess the proximity of SP3-ACMFD solutions to their full transport peers. Results prove that the approach can be considered as an acceptable interim approximation with outputs superior to the diffusion method, close to the transport results, and with the computational costs less than the full transport approach. The work would be further generalized to time dependent solutions in Part II.

Influence of various metal oxides on mechanical and physical properties of heat-cured polymethyl methacrylate denture base resins

  • Asar, Neset Volkan;Albayrak, Hamdi;Korkmaz, Turan;Turkyilmaz, Ilser
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권3호
    • /
    • pp.241-247
    • /
    • 2013
  • PURPOSE. To evaluate the effect of various metal oxides on impact strength (IS), fracture toughness (FT), water sorption (WSP) and solubility (WSL) of heat-cured acrylic resin. MATERIALS AND METHODS. Fifty acrylic resin specimens were fabricated for each test and divided into five groups. Group 1 was the control group and Group 2, 3, 4 and 5 (test groups) included a mixture of 1% $TiO_2$ and 1% $ZrO_2$, 2% $Al_2O_3$, 2% $TiO_2$, and 2% $ZrO_2$ by volume, respectively. Rectangular unnotched specimens ($50mm{\times}6.0mm{\times}4.0mm$) were fabricated and drop-tower impact testing machine was used to determine IS. For FT, compact test specimens were fabricated and tests were done with a universal testing machine with a cross-head speed of 5 mm/min. For WSP and WSL, disc-shaped specimens were fabricated and tests were performed in accordance to ISO 1567. ANOVA and Kruskal-Wallis tests were used for statistical analyses. RESULTS. IS and FT values were significantly higher and WSP and WSL values were significantly lower in test groups than in control group (P<.05). Group 5 had significantly higher IS and FT values and significantly lower WSP values than other groups (P<.05) and provided 40% and 30% increase in IS and FT, respectively, compared to control group. Significantly lower WSL values were detected for Group 2 and 5 (P<.05). CONCLUSION. Modification of heat-cured acrylic resin with metal oxides, especially with $ZrO_2$, may be useful in preventing denture fractures and undesirable physical changes resulting from oral fluids clinically.

표면처리방법에 따른 Electroforming Gold와 레진과의 전단결합강도 (The Shear Bond Strength of Resin to Electroforming Gold according to the Surface Treatment)

  • 유병일;장문숙;윤태호;박주미;박찬운
    • 구강회복응용과학지
    • /
    • 제22권2호
    • /
    • pp.125-136
    • /
    • 2006
  • Statement of problem. The success of the bonding between electroforming gold and resin is dependent on the surface-conditioning technique but its effective technique has net been studied widely. Purpose. The purpose of the study was to evaluate the bond strength between the electroforming gold and resin with varying the surface-conditioning technique. Materials and methods. Sixty rectangular shaped metal specimens were made and one side of each specimen were gold hard plated. The sand-blasted specimens were divided into four experimental groups with fifteen specimens in each group and were treated as follows. Group 1: Silicoating (Rocatec, 3M ESPE)+ Sinfony (3M ESPE), Group 2: SR Link+ SR Adoro (Ivoclar Vivadent), Group 3: Tin plating (Microtin, Danville Engineering)+ SR Link+ SR Adoro, Group 4: Tin plating (Micro tin, Danville Engineering)+ Silicoating (Rocatec)+ Sinfony. Shear bond strength at metal-resin interface were measured using universal testing machine. Energy Dispersive x-ray analysis was done and scanning electron microscope images were taken and observed. Results and Conclusion. The following conclusions were drawn. 1. The mean shear bond strength values in order were 11.69MPa (Group 2), 22.35MPa (Group 3), 22.40MPa (Group 1) and 27.71MPa (Group 4). There was no significant difference in Group 1, Group 3 and Group 4(P>0.05). 2. In the EDX line analysis, the Au was detected on the surface of all specimen. $SnO_2$ showed on the surface of Group 2 and $SiO_2$ was detected on the surface of Group 1. 3. Increasing of roughness by sandblasting(Group 2), formation of micro-irregularities and tin crystals by electrolytic tin plating(Group 3) and formation of surface irregularities and $SiO_2$ layer(Group 1,4) were observed in SEM photo. 4. Tin plating(Group 3) and Rocatec treatment(Group 1) showed clinically effective shear bond strength(>20MPa), but when the two surface conditioning method were used together higher bond strength were achieved.

이온도입에 의한 염산프로카인의 경피전달 증대 -고전압전류 및 초음파 병행의 상승효과 비교- (Enhanced Transdermal Delivery of Procaine Hydrochloride by lontophoresis -Comparison of Synergic Effect of High Voltage Current and Ultrasound-)

  • 이종숙;김경원;이재형;최영욱;이재휘
    • Journal of Pharmaceutical Investigation
    • /
    • 제36권3호
    • /
    • pp.185-192
    • /
    • 2006
  • The purpose of this study was to determine the effects of iontophoresis on transdermal delivery of procaine hydrochloride in healthy volunteers, as well as to the synergic effect of high voltage current or ultrasound on the efficacy of transdermal delivery of iontophoresis. Forty healthy volunteers were randomly assigned to four groups topical application group (TA), iontophoresis group (IT), pre-treatment of high voltage current stimulation with iontophoresis (HVS + IT), and pre-treatment of ultrasound application with iontophoresis (US + IT). All subjects received procaine iontophoresis on the forearm using direct current with 4 mA f3r 15 minutes. All subject was measured the duration of local anesthesia, pressure pain threshold, pain perception threshold using rectangular wave at 0.2 ms, 1 ms, 50 ms of rectangular current stimulation after procaine iontophoresis. For comparisons of the sensory characteristics and efficacy of iontophoresis between the groups, an one-way ANOVA and Kruskal-Wallis were used. The significant difference the duration of local anesthesia were found between the groups (p<0.001). The local anesthetic duration of IT, HVS+IT were significantly longer than TA. Meanwhile, the local anesthetic duration of US+IT was significantly longer than HVS+IT, IT and TA group (p<0.05). Also, the pressure pain threshold, pain perception threshold at 0.2 ms, 1 ms, 50 ms were significant difference between the groups (p<0.001). All sensory characteristics including pressure pain threshold, pain perception threshold of IT, HVS+IT was significantly increased than TA, whereas, US+1T was significantly increased HVS+1T, IT and TA (p<0.05). This study showed that the procaine iontophoresis have increase the duration of local anesthesia concomitantly pressure pain threshold and pain perception threshold of sensory nerve fibers such as $A-{\beta}$, $A-{\delta}$ and C fiber. This findings suggest that the iontophoresis enhanced the transdermal delivery of drug ions in vivo. The combination of ultrasound application and iontophoresis synergized the transdermal delivery of drug ions. It is suggests that an electric field, mechanical and heating property of ultrasound may contribute to synergic effect due to temporary changes of structure in the stratum corneum.

Effect of repair methods and materials on the flexural strength of 3D-printed denture base resin

  • Viotto, Hamile Emanuella do Carmo;Silva, Marcela Dantas Dias;Nunes, Thais Soares Bezerra Santos;Coelho, Sabrina Romao Goncalves;Pero, Ana Carolina
    • The Journal of Advanced Prosthodontics
    • /
    • 제14권5호
    • /
    • pp.305-314
    • /
    • 2022
  • PURPOSE. The aim of this study was to evaluate the flexural strength of a 3D-printed denture base resin (Cosmos Denture), after different immediate repair techniques with surface treatments and thermocycling. MATERIALS AND METHODS. Rectangular 3D-printed denture base resin (Cosmos Denture) specimens (N = 130) were thermocycled (5,000 cycles, 5℃ and 55℃) before and after the different repair techniques (n = 10 per group) using an autopolymerized acrylic resin (Jet, J) or a hard relining resin (Soft Confort, SC), and different surface treatments: Jet resin monomer for 180 s (MMA), blasting with aluminum oxide (JAT) or erbium: yttrium-aluminum-garnet laser (L). The control group were intact specimens. A three-point flexural strength test was performed, and data (MPa) were analyzed by ANOVA and Games-Howell post hoc test (α = 0.05). Each failure was observed and classified through stereomicroscope images and the surface treatments were viewed by scanning electron microscope (SEM). RESULTS. Control group showed the highest mean of flexural strength, statistically different from the other groups (P < .001), followed by MMA+J group. The groups with L treatment were statistically similar to the MMA groups (P > .05). The JAT+J group was better than the SC and JAT+SC groups (P < .05), but similar to the other groups (P > .05). Adhesive failures were most observed in JAT groups, especially when repaired with SC. The SEM images showed surface changes for all treatments, except JAT alone. CONCLUSION. Denture bases fabricated with 3D-printed resin should be preferably repaired with MMA+J. SC and JAT+SC showed the worst results. Blasting impaired the adhesion of the SC resin.

유한요소 해석을 통한 중·저준위 방사성폐기물 포장용기의 밀폐성 평가 (Evaluating the Airtightness of Medium- and Low-Intermediate-Level Radioactive Waste Packaging Container through Finite Element Analysis)

  • 이정인;박상욱;김동율;최창영;조용재;고대철;장진석
    • 한국포장학회지
    • /
    • 제29권3호
    • /
    • pp.203-209
    • /
    • 2023
  • The increasing saturation challenges in storage facilities for Low- and Intermediate-Level Radioactive Waste call for a more efficient storage approach. Consequently, we have developed a square-structured container that features a storage capacity approximately 20% greater than that of conventional drum-type containers. Considering the need to contain various radioactive wastes from nuclear power usage securely until they no longer pose a threat to human health or the environment, this study focuses on evaluating the sealing efficacy of the newly designed rectangular container using finite element analysis. Since radioactive waste containers typically do not experience external forces except under special circumstances, our analysis simulated the impact of an external force, assuming a fall scenario. After fastening the bolts, we examined the vertical stress distribution on the container by applying the calculated external force. The analysis confirms the container's stable seal.