• Title/Summary/Keyword: rectangle detection

Search Result 53, Processing Time 0.03 seconds

Spinal Deformity Detection Based on the Evaluation of Middle Line´s Displacement on a Moire Image of a Human Back

  • Kim, Hyoungseop;Seiji Ishikawa;Yoshinori Otsuka;Hisashi Shimizu;Takashi Shinomiya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.105.1-105
    • /
    • 2001
  • In this paper, a technique is described for classifying normal cases and abnormal cases in automatic spinal deformity detection by computer based on moire topographic images of human backs. Displacement is evaluated statistically between the middle line extracted from the entire moire image and the middle line obtained from a small rectangle area defined on the moire image. The middle line is calculated employing a developed potential symmetry analysis technique. The displacement is calculated in several regions and the mean and the standard deviation of the displacement values are chosen as two features. A linear discriminant function (LDF) is defined on the 2-D feature space based on the Mahalanobis distance and the features are classified into two categories, i.e., normal and ...

  • PDF

LOC 형광검출 소자를 위한 광 다이오드의 제작 및 특성 평가 (Development of Photo-diode for LOC fluorescence detector)

  • 김주환;신경식;김용국;김상식;주병권
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 디스플레이 광소자분야
    • /
    • pp.100-103
    • /
    • 2003
  • Signal detection technologies such as fluorescence, charge and electrochemical detection used in the monolithic capillary electrophoresis system to convert the biochemical reaction into the electrical signal. The fluorescence detection using photodiodes that measure fluorescence emitted from eluting molecules is widely used for the monolithic capillary electrophoresis system. In this paper, in order to fabricate a photosensor has the increased sensitivity, we investigated on the sensitivity of general type and p-i-n type diode. The p-i-n diode has higher sensitivity than photodiode. Considering these results, we fabricated p-i-n diodes on the high resistive$(4k{\Omega}{\cdot}cm)$ wafer into rectangle and finger pattern and compared internal resistance of each pattern. The internal resistance of p-i-n diode can be decreased by the application of finger pattern has parallel resistance structure from $571{\Omega}$ to $393{\Omega}$.

  • PDF

지능 영상 감시를 위한 흑백 영상 데이터에서의 효과적인 이동 투영 음영 제거 (An Effective Moving Cast Shadow Removal in Gray Level Video for Intelligent Visual Surveillance)

  • 응웬탄빈;정선태;조성원
    • 한국멀티미디어학회논문지
    • /
    • 제17권4호
    • /
    • pp.420-432
    • /
    • 2014
  • In detection of moving objects from video sequences, an essential process for intelligent visual surveillance, the cast shadows accompanying moving objects are different from background so that they may be easily extracted as foreground object blobs, which causes errors in localization, segmentation, tracking and classification of objects. Most of the previous research results about moving cast shadow detection and removal usually utilize color information about objects and scenes. In this paper, we proposes a novel cast shadow removal method of moving objects in gray level video data for visual surveillance application. The proposed method utilizes observations about edge patterns in the shadow region in the current frame and the corresponding region in the background scene, and applies Laplacian edge detector to the blob regions in the current frame and the corresponding regions in the background scene. Then, the product of the outcomes of application determines moving object blob pixels from the blob pixels in the foreground mask. The minimal rectangle regions containing all blob pixles classified as moving object pixels are extracted. The proposed method is simple but turns out practically very effective for Adative Gaussian Mixture Model-based object detection of intelligent visual surveillance applications, which is verified through experiments.

Real-time geometry identification of moving ships by computer vision techniques in bridge area

  • Li, Shunlong;Guo, Yapeng;Xu, Yang;Li, Zhonglong
    • Smart Structures and Systems
    • /
    • 제23권4호
    • /
    • pp.359-371
    • /
    • 2019
  • As part of a structural health monitoring system, the relative geometric relationship between a ship and bridge has been recognized as important for bridge authorities and ship owners to avoid ship-bridge collision. This study proposes a novel computer vision method for the real-time geometric parameter identification of moving ships based on a single shot multibox detector (SSD) by using transfer learning techniques and monocular vision. The identification framework consists of ship detection (coarse scale) and geometric parameter calculation (fine scale) modules. For the ship detection, the SSD, which is a deep learning algorithm, was employed and fine-tuned by ship image samples downloaded from the Internet to obtain the rectangle regions of interest in the coarse scale. Subsequently, for the geometric parameter calculation, an accurate ship contour is created using morphological operations within the saturation channel in hue, saturation, and value color space. Furthermore, a local coordinate system was constructed using projective geometry transformation to calculate the geometric parameters of ships, such as width, length, height, localization, and velocity. The application of the proposed method to in situ video images, obtained from cameras set on the girder of the Wuhan Yangtze River Bridge above the shipping channel, confirmed the efficiency, accuracy, and effectiveness of the proposed method.

객체와 배경 히스토그램을 활용한 개선된 보행자 검출 (Improved Pedestrian Detection Using Object and Background Histograms)

  • 정진식;오정수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.410-412
    • /
    • 2021
  • 본 논문은 객체와 배경 히스토그램을 활용한 개선된 보행자 검출 방식을 제안하고 있다. HOG & SVM 알고리즘을 통해 검출한 객체는 사각형 형태로 검출된다. 사각형 영역 안에는 배경과 객체의 영역이 혼합되어있다. 배경을 제외한 객체의 영역만을 검출한다면 객체 관련 다양한 정보를 쉽게 얻을 수 있다. 검출된 사각형의 크기를 객체의 크기에 맞게 x-y축 투영 알고리즘을 사용하여 재조정한다. 그리고 나서 재조정 된 사각형 내의 객체에 대한 히스토그램을 바탕으로 배경과 객체를 구분하여 개선된 객체를 검출한다. 검출한 객체와 원본의 객체를 비교하는 신뢰성 평가인 정밀도와 재현율의 평균값이 각각 97.9%와 90%를 보이고 있다.

  • PDF

AF를 위한 피부색 영역의 얼굴 특징을 이용한 Face Detection 알고리즘 및 하드웨어 구현 (Face Detection Algorithm and Hardware Implementation for Auto Focusing Using Face Features in Skin Regions)

  • 정효원;곽부동;하주영;한학용;강봉순
    • 한국정보통신학회논문지
    • /
    • 제13권12호
    • /
    • pp.2547-2554
    • /
    • 2009
  • 본 논문은 얼굴을 자동 초점(AF, Auto Focusing) 기능의 관심영역(ROI, Region of Interest)으로 이용하기 위한 얼굴 검출(Face Detection) 알고리즘 및 하드웨어 구현에 관한 것이다. 얼굴 검출을 위해 YCbCr 색 좌표계에서의 피부색 영역을 바탕으로 얼굴의 특징을 이용하였다. 얼굴에 해당하는 피부, 눈에 해당하는 에지, 그리고 입에 해당하는 음영의 픽셀수를 얼굴 특징으로 선택하였고, 얼굴 특징은 2,000개의 얼굴 샘플을 통하여 통계적으로 구하였다. 제안된 알고리즘은 하드웨어 설계 시, 하드웨어 자원의 효율성을 고려하여 영상의 중심에 가까운 두 명의 얼굴을 검출하게 하였다. 그리고 검출된 얼굴을 자동 초점의 관심 영역으로 이용하기 위하여 얼굴 영역을 사각형의 박스로 표시하였고, 영상에서 박스의 시작점과 끝점에 해당하는 위치를 출력하게 하였다. 하드웨어로 설계된 얼굴 검출 기능은 FPGA 보드와 모바일 폰 카메라 센서를 사용하여 검증하였다.

차량 그림자 누적을 통한 검지 영역 자동 설정 및 교통량 측정 방법 (Automatic Detection of Vehicle Area Rectangle and Traffic Volume Measurement through Vehicle Sub-Shadow Accumulation)

  • 김지완;이재성
    • 한국정보통신학회논문지
    • /
    • 제18권8호
    • /
    • pp.1885-1894
    • /
    • 2014
  • 기존 영상 검지기 분야에는 다양한 고성능 알고리즘들이 존재하지만 실시간 연산 요구량이 너무 많아 시스템 장비가 고가, 고전력을 소모하는 단점이 있었다. 이에 본 논문에서는 저가, 저전력 영상 검지 시스템 구현을 위해 안드로이드 플랫폼의 성능 사양에 적합한 저연산량의 영상 검지 알고리즘을 제안한다. 본 방법은 차량 하부에만 생성되는 sub-shadow 를 분리하여 이를 누적함으로써 차선 및 검지 영역을 정밀하게 설정하고 이 검지 영역을 통과하는 차량 자체와 차량 sub-shadow 의 통과패턴을 판단하여 차선별 교통량 뿐만 아니라 상행 및 하행 교통량까지 자동으로 분류할 수 있다. 실험 결과 제안하는 알고리즘은 하행 차량의 경우 평균 97.1%, 상행 차량의 경우 평균 94.1%의 검지율을 보였다. 이 결과는 상용 루프검지기의 성능 95% 에 버금가는 수준으로 만족스러운 성능을 보였다.

Improved LiDAR-Camera Calibration Using Marker Detection Based on 3D Plane Extraction

  • Yoo, Joong-Sun;Kim, Do-Hyeong;Kim, Gon-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2530-2544
    • /
    • 2018
  • In this paper, we propose an enhanced LiDAR-camera calibration method that extracts the marker plane from 3D point cloud information. In previous work, we estimated the straight line of each board to obtain the vertex. However, the errors in the point information in relation to the z axis were not considered. These errors are caused by the effects of user selection on the board border. Because of the nature of LiDAR, the point information is separated in the horizontal direction, causing the approximated model of the straight line to be erroneous. In the proposed work, we obtain each vertex by estimating a rectangle from a plane rather than obtaining a point from each straight line in order to obtain a vertex more precisely than the previous study. The advantage of using planes is that it is easier to select the area, and the most point information on the board is available. We demonstrated through experiments that the proposed method could be used to obtain more accurate results compared to the performance of the previous method.

Application of Multi-Class AdaBoost Algorithm to Terrain Classification of Satellite Images

  • Nguyen, Ngoc-Hoa;Woo, Dong-Min
    • 전기전자학회논문지
    • /
    • 제18권4호
    • /
    • pp.536-543
    • /
    • 2014
  • Terrain classification is still a challenging issue in image processing, especially with high resolution satellite images. The well-known obstacles include low accuracy in the detection of targets, especially for the case of man-made structures, such as buildings and roads. In this paper, we present an efficient approach to classify and detect building footprints, foliage, grass and road from high resolution grayscale satellite images. Our contribution is to build a strong classifier using AdaBoost based on a combination of co-occurrence and Haar-like features. We expect that the inclusion of Harr-like feature improves the classification performance of the man-made structures, since Haar-like feature is extracted from corner features and rectangle features. Also, the AdaBoost algorithm selects only critical features and generates an extremely efficient classifier. Experimental result indicates that the classification accuracy of AdaBoost classifier is much higher than that of the conventional classifier using back propagation algorithm. Also, the inclusion of Harr-like feature significantly improves the classification accuracy. The accuracy of the proposed method is 98.4% for the target detection and 92.8% for the classification on high resolution satellite images.

얼굴 요소의 영역 추출 및 Snakes를 이용한 윤곽선 추출 (Facial Feature Detection and Facial Contour Extraction using Snakes)

  • 이경희;변혜란
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제27권7호
    • /
    • pp.731-741
    • /
    • 2000
  • 본 논문은 얼굴 인식 또는 표정 인식 분야에 있어서 중요한 특징인 얼굴과 얼굴의 주요소인 눈과 입, 눈썹의 영역 추출 및 그의 윤곽선 추출에 관한 방법을 제시한다. 얼굴요소의 영역 추출은 엣지정보와 이진화 영상을 병합하여 이용한 프로젝션 분석을 통하여, 얼굴 및 각 얼굴요소를 포함하는 최소포함사각형(MER: Minimum Enclosing Rectangle)을 추출한다. 윤곽선 추출은 얼굴요소 모양의 개인차가 반영되고 빠른 수렴을 할 수 있는 스네이크 모델을 정의하여 수행한다. 스네이크는 초기 윤곽선의 설정이 윤곽선 추출 결과에 큰 영향을 미치므로, 초기 윤곽선의 설정 과정이 매우 중요하다. 본 논문에서는 얼굴 및 각 얼굴요소를 포함하는 각각의 최소포함사각형(MER)을 추출하고, 추출된 MER 내에서 얼굴 및 각 얼굴요소의 일반적인 모양을 초기 윤곽선으로 설정하는 방법을 사용한다. 실험결과 눈, 입, 얼굴의 MER 추출은 성능이 모두 우수하고, 눈썹이 흐린 사람들의 경우에만 눈썹의 MER 추출 결과가 좋지 않았다. 추출된 MER을 기반으로 하여 스네이크 모델을 적용한 결과, 눈, 입, 눈썹, 얼굴의 다양한 모양을 반영한 윤곽선 추출 결과를 보였다. 특히 눈의 경우는 1차 유도 엣지 연산자에 의한 엣지와 2차 유도 연산자를 이용한 영점 교차점(Zero Crossing)과 병합한 에너지 함수를 설정하여 보다 더 나은 윤곽선 추출 결과를 얻었다. 얼굴의 윤곽선의 경우도 엣지값과 밝기값을 병합한 에너지 함수에 의해 비교적 정확한 결과를 얻을수 있었다.

  • PDF