• 제목/요약/키워드: recrystallization behavior

검색결과 147건 처리시간 0.023초

후판압연에서의 재결정거동 예측 (Prediction of Recrystallization Behavior during Thick-Plate Rolling)

  • 이동근;박종진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 제3회 압연심포지엄 논문집 압연기술의 미래개척 (Exploitation of Future Rolling Technologies)
    • /
    • pp.320-326
    • /
    • 1999
  • In the present investigation, recrystallization occurring during hot rolling of thick steel plate was predicted. The thermo-mechanical history of a material point was traced by the finite element method and the recrystallization was predicted by the Sellars equations. The investigation was performed for 4 different cases; two different pass schedules in conventional rolling and two different pass schedules in controller rolling. Variations of temperature, strain, strain rate and grain size were compared with each other. It was found out that the difference of grain size through thickness was more distinctive in the cases of controller rolling.

  • PDF

고온성형중 동적재결정에 의한 하중감소의 정략적 해석 (Quantitative Analysis of Hot Forming with Stress Compensation to Dynamic Recrystallization)

  • 장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.203-206
    • /
    • 1999
  • The shift of flow behavior due to dynamic recrystallization during hot forming process is investigated, A series of load relaxation and compression tests has been conducted at various temperatures Constitutive relations and recrystallization behaviors were formulated from the mechanical test results, The consideration of dynamic recrystallization during a specific forming process was implemented to commercial FEM package by conditioned remeshing and remapping of state variables. Improvement of Load-Stroke prediction was validated by comparison with experimental results.

  • PDF

유한요소법을 이용한 Inconel 718의 열간단조공정시 동적재결정거동 예측 (Prediction of the Behavior of dynamic Recrystallization in Inconel 718 during Hot Forging using Finite Element Method)

  • 최민식;강범수;염종택;박노광
    • 소성∙가공
    • /
    • 제7권3호
    • /
    • pp.197-206
    • /
    • 1998
  • This paper presents the prediction of dynamic recrystallization behavior during hot forging of Inconel 718. Another experiment of pancake forging was also carried out to examine the recrystallization ration dynamically recrystallizaed grain size, and grain growth in the forging. In experiments cylindrical billets were forged by two operations with variations of forging temperature, reduction ration of deformation. and preheating process at each forging step. Also the finite element program, developed here for the prediction using the metallurgical models was used for the analysis of to Inconel 718 upsetting and the results were compared with experimental ones.

  • PDF

동적재료모델 및 연화모델을 도입한 SAF 2507의 열간단조 유한요소해석 (Implication of Dynamic Materials and Softening Models to the FEM Analysis of SAF2507 Hot Forging)

  • 방원규;정재영;장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.195-198
    • /
    • 2003
  • High temperature deformation and softening behavior of SAF 2507 super duplex stainless steel (SDSS) has been investigated in connection with an FEM analysis of hot forging process. Flow curves at various strain rates and temperatures were determined first from compression tests, and the kinetics of dynamic recrystallization were also formulated through the analysis of load relaxation test results. Applying the dynamic materials and proposed by Prasad et al., it was possible to determine the characteristics of deformation behavior effectively at a given condition of deformation. Constitutive relations and recrystallization kinetics formulated from the test results were then implemented in a commercial FEM code. Flow stress compensation formulated upon the volume fraction of recrystallization and adiabatic heating was found to improve significantly the FEA solutions in predicting the forming load and the distribution of recrystallized volume fraction after forging.

  • PDF

304 스테인레스강의 고온다단변형시 재결정 거동 (Recrystallization Behavior of 304 Stainless Steel during Hot Multistage Deformation)

  • 조상현;김성일;유연철;노광섭
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.77-80
    • /
    • 1997
  • The torsion tests in the range of 900~110$0^{\circ}C$, 5.0$\times$10-2~5.0$\times$100/sec were performed to study the recry stallization behavior of 304 stainless steel in the high temperature multistage deformation. The no-recrystallization temperature(Tnr) and fractional softening(FS) were determined by the change of flow curves. The inflection points of stress slope were moved to lower temperature area as the strain rate and the interrupt time were increased. From the multipass flow curve, the intersection between pass stress and FS curve was corresponding to the pass which the FS dropped abruptly and it was shown that the recrystallization area could be determined by the FS measurement in multipass deformation.

  • PDF

동적재료모델 및 연화모델을 응용한 SAF 2507 강의 열간단조 유한요소해석 (Application of Dynamic Materials and Softening Models to the FEM Analysis of Hot Forging in SAF2507 Steel)

  • 방원규;정재영;장영원
    • 소성∙가공
    • /
    • 제12권4호
    • /
    • pp.308-313
    • /
    • 2003
  • High temperature deformation and softening behavior of SAF 2507 super duplex stainless steel (SDSS) has been investigated in connection with an FEM analysis of hot forging process. Flow curves at various strain rates and temperatures were determined first from compression tests, and the kinetics of dynamic recrystallization were also formulated through the analysis of load relaxation test results. Using the dynamic materials theory proposed by Prasad, the deformation behavior was effectively determined for various conditions. Constitutive relations and recrystallization kinetics formulated from the test results were then implemented in a commercial FEM code. The forming load as well as the distribution of recrystallized volume fraction after forging was successfully predicted by means of the flow stress compensation formulated upon the volume fraction of recrystallization and adiabatic heating.

Microstructural Evolution and Recrystallization Behavior Traced by Electron Channeling Contrast Imaging

  • Oh, Jin-Su;Yang, Cheol-Woong
    • Applied Microscopy
    • /
    • 제48권4호
    • /
    • pp.130-131
    • /
    • 2018
  • Electron channeling contrast imaging (ECCI) is one of the imaging techniques in scanning electron microscopy based on a variation in electron backscattering yield depending on the direction of the primary electron beam with respect to the crystal lattice. The ECCI provides not only observation of the distribution of individual grains and grain boundaries but also identification of the defects such as dislocations, twins, and stacking faults. The ECCI at the interface between recrystallized and deformed region of shot peening treated nickel clearly demonstrates the microstructural evolution during the recrystallization including original grain boundaries, and thus can provide better insight into the recrystallization behavior.

0.15C-0.2Si-0.5Mn 저탄소강의 동적 재결정 거동에 미치는 Nb 첨가와 공정 변수의 영향 (Effect of Nb Contents and Processing Parameters on Dynamic Recrystallization Behavior of 0.15C-0.2Si-0.5Mn Low-Carbon Steels)

  • 이상인;서하늘;이재승;황병철
    • 열처리공학회지
    • /
    • 제29권5호
    • /
    • pp.209-215
    • /
    • 2016
  • In this study, the effect of Nb contents and processing parameters on dynamic recrystallization behaviour of 0.15C-0.2Si-0.5Mn low-carbon steels was investigated. Three kinds of steel specimens with different Nb contents were fabricated and then high-temperature compressive deformation test was conducted by varying reheating temperature (RT), deformation temperature (DT), and strain rate (SR). The Nb2 and Nb4 specimens containing Nb had smaller prior austenite grain size than the Nb0 specimens, presumably due to pinning effect by the formation of carbides and carbonitrides precipitates at austenite grain boundaries. The high-temperature compressive deformation test results showed that dynamic recrystallization behavior was suppressed in the specimens containing Nb as the strain rate increased and deformation temperature decreased because of pinning effect by precipitates, grain boundary dragging effects by solute atoms, although the compressive stress increased with increasing strain rate and decreasing deformation temperature.

Zr-xSn 이원계 합금의 재결정에 관한 연구 (A Study on the Recrystallization Behavior of Zr-xSn Binary Alloys)

  • 이명호;구재송;정용환;정연호
    • 한국재료학회지
    • /
    • 제9권11호
    • /
    • pp.1123-1128
    • /
    • 1999
  • Zr합금의 재결정에 미치는 Sn 영향을 조사하기 위해서 Zr-xSn (x=0.5, 0.8, 1.5, 2.0wt.%) 합금을 판재로 제조하여 $300^{\circ}C-800^{\circ}C$에서 1시간 동안 열처리하였다. 열처리 온도에 따른 Zr합금의 경도, 미세조직 및 석출물 특성을 미소경도계, 광학 현미경 및 투과 전자 현미경을 이용하여 조사하였다. 냉간가공된 Zr-xSn 합금은 회복, 재결정, 결정립 성장의 전형적인 거동을 나타냈으며, 냉간가공재의 재결정은 $500^{\circ}C$에서 $700^{\circ}C$ 범위에서 완료되었다. Sn량이 증가함에 따라서 합금의 재결정온도는 증가하였고 재결정후의 결정립 크기는 감소하였다. 경도 변화는 미세조직 변화와 잘 일치하는 경향을 보였다. 실험 결과로부터 냉간 가공된 Zr합금의 재결정은 아결정립의 합체 및 성장기구에 의해서 일어나는 것으로 평가되었다.

  • PDF

열간 유동응력 예측을 위한 물리식 기반 동적 재결정 모델 (A Physically Based Dynamic Recrystallization Model for Predicting High Temperature Flow Stress)

  • 이호원;강성훈;이영선
    • 소성∙가공
    • /
    • 제22권8호
    • /
    • pp.450-455
    • /
    • 2013
  • In the current study, a new dynamic recrystallization model for predicting high temperature flow stress is developed based on a physical model and the mean field theory. In the model, the grain aggregate is assumed as a representative volume element to describe dynamic recrystallization. The flow stress and microstructure during dynamic recrystallization were calculated using three sub-models for work hardening, for nucleation and for growth. In the case of work hardening, a single parameter dislocation density model was used to calculate change of dislocation density and stress in the grains. For modeling nucleation, the nucleation criterion developed was based on the grain boundary bulge mechanism and a constant nucleation rate was assumed. Conventional rate theory was used for describing growth. The flow stress behavior of pure copper was investigated using the model and compared with experimental findings. Simulated results by cellular automata were used for validating the model.