• Title/Summary/Keyword: recovery of hydrophobicity

Search Result 49, Processing Time 0.018 seconds

Effects of sodium hydroxide cleaning on polyvinylidene fluoride fouled with humic water

  • Jang, Yoon-sung;Kweon, JiHyang;Kang, Min-goo;Park, Jungsu;Jung, Jae Hyun;Ryu, JunHee
    • Membrane and Water Treatment
    • /
    • v.8 no.2
    • /
    • pp.149-160
    • /
    • 2017
  • This study investigated effects of NaOH cleaning on the intrinsic permeability of polyvinylidene fluoride (PVDF) membranes and flux recoveries and membrane resistances under various conditions encountered during ultrafiltration in water treatment plants. The NaOH cleaning using 10,000 mg/L NaOH led to discoloration of PVDF membranes and had little effect on water flux. The NaOH cleaning was efficient in removing the fouling layer caused by humic water. However, long filtration induced a fouling layer that was not removed easily by NaOH cleaning. The lower temperature during filtration yielded rapid increases in transmembrane pressure and decreases in NaOH cleaning efficiency. The alkaline cleaning of PVDF changed the membrane properties such as the hydrophobicity and morphology. Foulant properties, operational conditions such as temperature, and chemical agents should be considered for cleaning strategies for PVDF applied in water treatment.

Separation of Menthol/Water Mixture with Surface-Modified Hydrophobic Membrane (표면개질한 소수성 막을 이용한 menthol/water 혼합물의 분리)

  • Han, Sang-Oh;Song, Kun-Ho;Lee, Kwang-Rae
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.249-254
    • /
    • 2002
  • The surface of tube-type alumina substrate was modified with a silane coupling agent in order to modify the membrane surface with hydrophobicity. Contact angle of water drops on modified membrane was greater than $90^{\circ}$. The modified membrane was tested in pervaporation and vapor permeation for the recovery of menthol from dilute menthol/water mixture. With increasing menthol concentration in the feed at $45^{\circ}C$, permeation rate of menthol in pervaporation and vapor permeation increased from $0.039(g/m^2hr)$ to $0144(g/m^2hr)$ and from. $0.077(g/m^2hr)$ to $0.297(g/m^2hr)$ respectively. When feed concentration is 0.005(g/L) at $45^{\circ}C$, separation factor for menthol in pervaporation and vapor permeation is 20,7 and 40.5 respectively.

  • PDF

Surface Performance of Housing Materials and Profiles in AC Tracking Wheel Tests (AC 트래킹 휠 시험에서 하우징 재료 및 형상의 표면 성능)

  • Kim, Seung-Hyun;Noh, Yo-Han;Cheong, Jong-Hun;Cho, Han-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.135-140
    • /
    • 2020
  • An experimental study was conducted using the tracking wheel test (IEC 62217) method for evaluating the performance of insulator materials, in particular ethylene propylene diene monomer (EPDM) and silicone rubber. In addition, we studied the tracking characteristics resulting from applying the same method for the shape of the insulator housing, that is, the performance of regular and alternating sheds. The evaluation parameters were leakage current, surface characteristics, SEM, EDX, hydrophobicity, and temperature distribution; likewise, we applied the commercial frequency dry (and wet) flashover voltage test. We found that the regular shed had a greater leakage current than the alternating shed and that the recovery of the hydrophobicity in terms of rest time was greater than that of the EPDM in terms of leakage current. All of the regular-shed insulators of silicone rubber had tracking traces and choking on the sheath parting line, while the alternating shed showed only choking at the interface but no tracking traces. Therefore, it can be concluded that the commercial frequency wet flashover voltage of the silicone rubber with regular shed before and after the tracking wheel test is higher than that of the alternating shed.

Characterization of Acetylene Plasma-Polymer Films: Recovery of Surface Hydrophobicity by Aging

  • Kim, Jeong-Ho;Kim, Tae-Hyung;Oh, Jung-Geun;Noh, Seok-Hwan;Lee, Jeong-Soo;Park, Kyu-Ho;Ha, Sam-Chul;Kang, Heon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2589-2594
    • /
    • 2009
  • Aging phenomena of plasma polymer films were studied by using the surface analysis techniques of contact angle measurement, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (TOFSIMS), and atomic force microscopy (AFM). The polymer films were grown on an aluminum substrate by using a plasma polymerization method from a gas mixture of acetylene and helium, and the films were subsequently modified to have a hydrophilic surface by oxygen plasma treatment. Aging of the polymer films was examined by exposing the samples to water and air environments. The aging process increased the hydrophobicity of the surface, as revealed by an increase in the advancing contact angle of water. XPS analysis showed that the population of oxygen-containing polar groups increased due to the uptake of oxygen during the aging, whereas TOF-SIMS analysis revealed a decrease in the polar group population in the uppermost surface layer. The results suggest that the change in surface property from hydrophilic to hydrophobic nature results from the restructuring of polymer chains near the surface, rather than compositional change of the surface. Oxidative degradation may enhance the mobility and the restructuring process of polymer chains.

Permeability recovery and changes in fouling layer characteristics of PTFE membrane by enhanced backwash cleaning using NaOCl during coagulation and microfiltration (응집 및 정밀여과공정의 강화역세정시 NaOCl에 따른 PTFE막 투과능 회복과 막오염층 변화)

  • Kang, Sun Gu;Park, Keun Youg;Kwark, Dong-Geun;Kim, Yun-Jung;Kweon, Jihyang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.2
    • /
    • pp.233-241
    • /
    • 2015
  • Polytetrafluoroethylene (PTFE) membrane has high resistance to chlorine, which is a great advantages in chemical cleaning to recover water flux during membrane processes in drinking water systems. A humic kaolin water with approximately 4 mg/L of DOC and 10 NTU of turbidity was prepared as a feed water. Coagulation pretreatment with or without settling was applied. The coagulation with settling showed the greatest water production. The reduced flux was effectively recovered by NaOCl cleaning, i.e., 21% recovery by 50 mg/L of NaOCl cleaning and 49% recovery by 500 mg/L NaOCl cleaning. The images of SEM and AFM analyses were corresponded to the water flux variation. However, when the floc was accumulated on the membrane surfaces, the efficiency of NaOCl cleaning was substantially limited. In addition, dynamic contact angle became greater after cleaning, which indicates changes in characteristics of fouling layer such as surface hydrophobicity. Proper cleaning technologies during enhanced backwash using NaOCl would expand application of PTFE membranes in drinking water systems.

PEI Hollow Fiber Membranes Modified with Fluorinated Silica Nanoparticles for the Recovery of Biogas from Anaerobic Effluents (불화 실리카로 개질된 폴리에테르이미드 중공사막을 이용한 혐기성 유출수로부터 바이오가스 회수)

  • Yun, Kang Hee;Wongchitphimon, Sunee;Bae, Tae-hyun
    • Membrane Journal
    • /
    • v.30 no.5
    • /
    • pp.326-332
    • /
    • 2020
  • In this study, polymer-fluorinated silica composite hollow fiber membranes were fabricated and applied to a membrane contactor for the recovery of methane dissolved in the anaerobic effluent. To prepare the composite membranes, porous hollow fiber substrates were fabricated with Ultem®, a commercial polyetherimide (PEI). Subsequently, fluorinated silica particles were synthesized and coated on the surface via strong covalent bonding. Due to the high porosity, our membrane showed a CH4 flux of 8.25 × 10-5 ㎤ (STP)/㎠·s at the liquid velocity of 0.03 m/s which is much higher that that of commercial polypropylene membrane designed for degassing processes. This is attributed to our membrane's high porosity as well as a superior surface hydrophobicity (120~122°) resulted from the coating with fluorinated silica nanoparticles.

Permeation Flux of Ester Compounds through Hydrophobic Membrane by Pervaporation (투과증발에 의한 Ester 성분의 소수성막의 투과플럭스)

  • Song, Kun-Ho;Lee, Kwang-Rae
    • Membrane Journal
    • /
    • v.26 no.3
    • /
    • pp.197-204
    • /
    • 2016
  • The objective of this work was to investigate the performance of pervaporation process for recovery of ester compounds from model aqueous solutions and how the fluxes of esters and water were affected by changes in feed concentration and temperature. The flux of ethyl acetate (EA), propyl acetate (PA), ethyl propionate (EP), butyl acetate (BA), and ethyl butyrate (EB) increased with an increase in feed concentration from 0.15 wt% to 0.60 wt%, and increased with temperature change from $30^{\circ}C$ to $50^{\circ}C$. The flux of esters (EA, PA, EP, BA, and EB) was in order of (EA) < (PA, EP) < (BA, EB). This result meant that the flux strongly depended on affinity between esters and membrane surface; EA is the least hydrophobic because it has one hydrophobic function group ($-CH_2-$), (PA, EP) have two ($-CH_2-$), and (BA, EB) are the most hydrophobic because these have three ($-CH_2-$). As well as such an influence of hydrophobicity of ester molecules on ester flux, the influence of hydrophobicity of membrane surface on ester flux needs further investigation. With increase in temperature, water flux of aqueous EA, PA, EP, BA, and EB solution increased. However, water flux of aqueous ester solutions did not change appreciably with increase in concentration. This experimental results may be used as fundamental data for pervaporation (PV) to improve the aroma recovery process as an alternative to thermal evaporation and distillation processes.

Factors Affecting Foam Separation of Proteins (단백질의 기포분리에 영향을 미치는 요소들에 관한 연구)

  • Lee, Boo-Young;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.220-224
    • /
    • 1987
  • The concentration ranges forming surface excess of bovine serum albumin(BSA) and ovalbumin solutions were determined, and the factors affecting the foam separation of BSA were investigated. The surface tension of BSA solution decreased from 72 to 61 dynelcm, when the concentration changed from $5{\times}10^{-3}$ to $3{\times}10^{-2}%$, and the critical micelle concentration was appeared to be at 0.03% of BSA. At the isoelectric point (pH 4.9) of BSA, the foamate volume was maximum, but enrichment ratio was minimum, resulting in the maximum recovery rate. When the pH deviated from the isoelectric point, the foamate volume decreased and the enrichment ratio increased. The enrichment ratio increased, while the foamate volume decreased drastically as the temperature was elevated above $20^{\circ}C$, resulting in the decrease in recovery rate. As the gas flow rate increased, the enrichment ratio decreased and the foamate volume increased. When $(NH_4)_2SO_4$ was added, the enrichment ratio decreased, but the maximum foamate was obtained at ionic strength 7. The concentration to form the surface excess of ovlbumin, which has lower surface hydrophobicity than BSA, was 200 times higher than that of BSA. This fact indicates the possibility of selective foam separation by hydrophobicity difference of proteins.

  • PDF

Effect of Pluronic F-68 on the Post-thaw Growth of Cryopreserved Transgenic Nicotiana tabacum Cells (Pluronic F-68이 동결보존된 형질전환 담배세포의 해동 후 세포생장에 미치는 영향)

  • Cheon, Su-Hwan;Lee, Kyoung-Hoon;Kwon, Jun-Young;Ryu, Hyun-Nam;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.22 no.5
    • /
    • pp.313-317
    • /
    • 2007
  • To enhance the growth of cryopreserved cells of transgenic Nicotiana tabacum, Pluronic F-68 was supplemented in a recovery medium during post-thaw period. As cryoprotective agents, 1 M sucrose, 0.5 M glycerol and 0.5 M dimethyl sulfoxide (DMSO) were added before freezing steps. The post-thaw growth of the cells was improved with Pluronic F-68, ranged from 0.1 to 10 g/L. The interactions of Pluronic F-68 with the cells were confirmed by the changes of hydrophobicity or permeability of the cells. Pluronic F-68 did not show any effect on the activity of $\beta$-glucuronidase (GUS) in all treatments. Therefore, the addition of Pluronic F-68 in a recovery medium was found to be beneficial to enhance the post-thaw growth of cryopreserved transgenic tobacco cells without affecting the production of recombinant protein.

Distinctive contribution of two additional residues in protein aggregation of Aβ42 and Aβ40 isoforms

  • Dongjoon Im;Tae Su Choi
    • BMB Reports
    • /
    • v.57 no.6
    • /
    • pp.263-272
    • /
    • 2024
  • Amyloid-β (Aβ) is one of the amyloidogenic intrinsically disordered proteins (IDPs) that self-assemble to protein aggregates, incurring cell malfunction and cytotoxicity. While Aβ has been known to regulate multiple physiological functions, such as enhancing synaptic functions, aiding in the recovery of the blood-brain barrier/brain injury, and exhibiting tumor suppression/antimicrobial activities, the hydrophobicity of the primary structure promotes pathological aggregations that are closely associated with the onset of Alzheimer's disease (AD). Aβ proteins consist of multiple isoforms with 37-43 amino acid residues that are produced by the cleavage of amyloid-β precursor protein (APP). The hydrolytic products of APP are secreted to the extracellular regions of neuronal cells. Aβ 1-42 (Aβ42) and Aβ 1-40 (Aβ40) are dominant isoforms whose significance in AD pathogenesis has been highlighted in numerous studies to understand the molecular mechanism and develop AD diagnosis and therapeutic strategies. In this review, we focus on the differences between Aβ42 and Aβ40 in the molecular mechanism of amyloid aggregations mediated by the two additional residues (Ile41 and Ala42) of Aβ42. The current comprehension of Aβ42 and Aβ40 in AD progression is outlined, together with the structural features of Aβ42/Aβ40 amyloid fibrils, and the aggregation mechanisms of Aβ42/Aβ40. Furthermore, the impact of the heterogeneous distribution of Aβ isoforms during amyloid aggregations is discussed in the system mimicking the coexistence of Aβ42 and Aβ40 in human cerebrospinal fluid (CSF) and plasma.