• Title/Summary/Keyword: recovered pulp

Search Result 57, Processing Time 0.024 seconds

EFFECTS OF DENTAL THERAPEUTIC AGENTS ON THE RESPONSE OF THE PULP NERVE (치과치료용 약물이 치수신경의 반응에 미치는 영향)

  • Kwon, Oh-Yang;Yoon, Soo-Han;Lee, Jong-Heun
    • Restorative Dentistry and Endodontics
    • /
    • v.15 no.1
    • /
    • pp.1-15
    • /
    • 1990
  • The aim of this study was to investigate the effect of dental therapeutic agent on conduction velocity and threshold current of intradental A- and C-fibers in the cat. Inferior alveolar nerve of cat anesthetized with sodium pentobarbital was exposed and dissected until response of functional single pulp nerve until could be evoked by monopolar electrical stimulation of the crown of the lower left canine teeth. 10ms rectangular pulse was used to determine the threshold current and 1ms rectangular pulse was used to determine conduction velocity. After application of calcium chloride (1, 2, 6M), calcium hydroxide mixed with saline, potassium chloride (0.2, 0.8, 1.6M), eugenol, zinc oxide eugenol to the cavity on the labial surface, conduction velocity and threshold current of single pulp nerve unit were compared with the control. In 10 cats, 24 $A{\delta}$- and 11 C- pulp nerve units were recorded. The mean conduction velocities of $A{\delta}$- and C-fibers were 7.5m/sec (SD=5.8) and 1.2m/sec (SD=0.4), respectively. The mean threshold current was $12.3{\mu}A$ (SD=5.3) for $A{\delta}$-fibers and $24.9{\mu}A$ (SD=8.1) for C-fibers. 1, 2, 6M calcium chloride caused decrease of conduction velocity and remarkable increase of threshold current in $A{\delta}$- and C-fibers. The effect of calcium hydroxide mixed with saline was similar but smaller than calcium chloride solution. 0.2M potassium chloride had insignificant effect. In 0.8M potassium chloride, the threshold current was increased although conduction velocity was not affected. In 1.6M potassium chloride, the threshold current was increased and the conduction velocity was slowed down. Spontaneous activity was recorded frequently for first 5 min but gradually reduced both in $A{\delta}$- and C-fibers. Eugenol had irreversible effect on pulp nerve in that initially there were not certain changes in the conduction velocity and threshold current of $A{\delta}$- and C-fibers, but the responses to electrical stimulation were abruptly disappeared after sustained application and were not recovered. Contrary to eugenol, zinc oxide eugenol did not caused significant increase of the threhold current and caused time dependent decrease of the conduction velocity, and did not show any irreversible change.

  • PDF

Thermal Decomposition of Arsenopyrite by Microwave Heating and the Effect of Removal Arsenic with Wet-magnetic separation (마이크로웨이브 가열에 의한 황비철석의 열분해와 습식-자력선별에 의한 비소 제거 효과)

  • On, Hyun-Sung;Kim, Hyun-Soo;Myung, Eun-Ji;Lim, Dae-Hack;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.3
    • /
    • pp.103-112
    • /
    • 2017
  • In order to transform arsenopyrite into pyrrhotite and to decrease As content by less than 2,000 mg/kg, pulp sample and non-magnetic pulp sample were heated in a microwave oven at different heating times and were separated through wet-magnetic separation. As the microwave heating time increased, the phase of pyrrhotite was extended to become arsenopyrite entirely. The melting pores and micro-cracks occurred on the pyrrhotite due to hot spot phenomenon with microwave heating. The heated raw pulp sample (As content : 19,970.13 mg/kg) and non-magnetic pulp sample (As content : 19,970.13 mg/kg) which were heated in a microwave oven for 10 minutes were separated through wet-magnetic separation and magnetic fraction containing less than 2,000 mg/kg of As content was recovered only from the heated sample of magnetic separation. It was discovered that for the sulfide complex ore with As penalty imposed on, if microwave heating and wet-magnetic separation are effectively utilized, magnetic fraction. We expect to be able to obtain ore minerals with an arsenic content below the penalty charge.

Studies on Seasonal Variation of Linerboard Strength (I) - Effect of Pulping Temperature of OCC on Strength- (계절에 따른 골판지 원지의 강도변화에 대한 연구 (1) - OCC의 해리온도가 강도에 미치는 영향 -)

  • Lee, Kwang Seob;Pak, Yell Rim;O, Jun;Jo, Woo Sang;Jo, Ik Jeong;Ryu, Jeong Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.3
    • /
    • pp.91-98
    • /
    • 2016
  • Linerboards have been produced by recycling recovered paper such as old corrugated containers(OCC). Usually linerboards produced during summer season show weak strength compared with those of produced during winter. In order to cope with the weak strength of linerboards produced during summer, and to confirm uniform quality, it is important to understand the seasonal effect on strength properties. Effect of pulping temperature of the OCC for linearboard production was investigated by controlling pulping temperatures at $18^{\circ}C$ and $51^{\circ}C$. Low pulping temperature ($18^{\circ}C$) caused more generation of fines in stock. Consequently retention and drainage of linerboard defibrated at high pulping temperature ($51^{\circ}C$) were better than those of $18^{\circ}C$. Strength properties of handsheet at low pulping temperature were higher than those of high pulping temperature and it could be confirmed that low pulping temperature during winter is one reason of seasonal variation of recycled linerboard strength. It is considered that surface modification of OCC fibers by harsh pulping action during winter caused increase of paper strength.

Alteration of Apoptosis during Differentiation in Human Dental Pulp-Derived Mesenchymal Stem Cell

  • Lee, Hyeon-Jeong;Park, Byung-Joon;Jeon, Ryoung-Hoon;Jang, Si-Jung;Son, Young-Bum;Lee, Sung-Lim;Rho, Gyu-Jin;Kim, Seung-Joon;Lee, Won-Jae
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.2-9
    • /
    • 2019
  • Because mesenchymal stem cells (MSCs) maintain distinct capacities with respect to self-renewal, differentiation ability and immunomodulatory function, they have been highly considered as the therapeutic agents for cell-based clinical application. Of particular, differentiation condition alters characteristics of MSCs, including cellular morphology, expression of gene/protein and cell surface molecule, immunological property and apoptosis. However, the previous results for differentiation-related apoptosis in MSCs have still remained controversial due to varied outcomes. Therefore, the present study aimed to disclose periodical alterations of pro- and anti-apoptosis in MSCs under differentiation inductions. The human dental pulp-derived MSCs (DP-MSCs) were differentiated into adipocytes and osteoblasts during early (1 week), middle (2 weeks) and late (3 weeks) stages, and were investigated on their apoptosis-related changes by Annexin V assay, qRT-PCR and western blotting. The ratio of apoptotic cell population was significantly (p < 0.05) elevated during the early to middle stages of differentiations but recovered up to the similar level of undifferentiated state at the late stage of differentiation. In the expression of mRNA and protein, whereas expressions of pro-apoptosis-related makers (BAX and BAK) were not altered in any kind and duration of differentiation inductions, anti-apoptosis marker (BCL2) was significantly (p < 0.05) elevated even at the early stage of differentiations. The recovery of apoptotic cell population at the late stage of differentiation is expected to be associated with the response by elevation of anti-apoptotic molecules. The present study may contribute on understanding for cellular mechanism in differentiation of MSCs and provide background data in clinical application of MSCs in the animal biotechnology to develop effective and safe therapeutic strategy.

A Study on Recovery of Rare Earth and Acid Leaching for Wet Recycling of Waste NiMH Batteries (니켈수소 폐이차전지의 습식 재활용을 위한 산침출 및 희토류 회수에 대한 연구)

  • Ahn, Nak-Kyoon;Kim, Dae-Weon;Yang, Dae-Hoon
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.22-30
    • /
    • 2018
  • In order to industrially recycle nickel, cobalt and rare earth elements included in waste NiMH batteries, electrode powder scraps were recovered by dismantle, crushing and classification from automobile waste battery module. As a result of leaching recovered electrode powder scrap with sulfuric acid solution, 99% of nickel, cobalt and rare earth elements were leached under reaction conditions of 1.0 M sulfuric acid solution, pulp density 25 g/L and reaction temperature $90^{\circ}C$ for 4 hours. In addition, the rare earth elements were able to separate from nickel / cobalt solution as cerium, lanthanum and neodymium precipitated under pH 2.0 using 10 M NaOH.

Recycling of Plant Fiber Resources: Enhanced Hydration of Newspaper Stock for Decrease of Deinking Reject (식물유래 섬유자원의 재활용: 탈묵 수율 개선을 위한 신문 지료의 수화 촉진 방안)

  • Chung, Sung-Hyun;Kim, Joong-Ho;Joo, Jong-Hun;Bang, Jae-Wook
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2011.10a
    • /
    • pp.39-41
    • /
    • 2011
  • The recycling rate of recovered paper in Korea is the highest in the world, 92%, but remanufacturing yield is low due to the extremely poor quality of the paper. The poor quality, in turn, influences to the reject amount in deinking process. To increase the yield of old newspaper recycling process, hydrophobic degree of inorganic pigments of deinking stock must be reduced. To determine the hydrophobicity, Pitch Potential Deposit Tester (PDT) was newly designed and applied with respect to the SB latex property of various quality used in Korea; its hydrophobic degree according to Tg, gel content, charge and particle size of latex and optimum designing condition of SB latex. And below are the conclusions: 1. The reason of excessive reject from old newspaper deinking process for total amount of printed ink is loss of inorganic pigments. When lipase, a biochemical catalyst, was applied with the purpose of preventing inorganic pigments loss about more than 70% of total reject weight and promoting hydration of pulp for deinking, deinking process yield of pre flotation secondary stage increased remarkably without any changes of deinking efficiency. 2. Lipase improved deinking stock by cutting ester linkage on surface of hydrophobic materials to promote its hydration. From this, it reached the conclusion that hydration degree of stock exercises significant effect on flotation deinking process yield. 3. Inorganic alkali promotes hydration of deinking stock. But there have been needs for more fundamental measures other than inorganic alkali of promoting hydration for yield improvement. For this, this study intended to find out reasons of chemical properties change on surface of hydrophobic material by change of pH. 4. Pitch Deposit Test (PDT) was performed for understanding principle of why surface of coating flake from OMG is hydrophobic and why it becomes hydrophilic when pH of stock is alkaline. As a result of this test, it is determined that swelling property by change of pH of latex film, which were used as coating adhesive is the reason for hydrophobic change. 5. Hydrophilicity of coating flake increased with hydrophilic pigments. And as more of SB Latex adhesive was used and higher of calcium hardness of stock became, its hydrophilicity decreased. SB Latex adhesive film is reformed by mechanical friction. For having hydrophilicity under neutral pH, strong bruising action such as kneading is required. 6. Because swelling of adhesive film decreases as Tg of SB latex gets lower and mean diameter gets smaller, it shows hydrophobicity under neutral pH. This lowers hydrophilicity of coating flake, which leads to easy elimination with flotation reject on DIP process. Therefore, for improving future flotation yield, it is necessary to develop to use eco-friendly clean SB latex by raising Tg and increasing mean diameter for recycling, and as a result, to reduce excessive loss of coating flake as a reject from deinking process.

  • PDF

Study on the Recovery Silver and Nanoparticles Synthesis from LTCC By-products of Lowly Concentrated Silver (저농도 은이 함유된 LTCC 전극공정부산물로부터 은 회수 및 나노입자 제조 연구)

  • Joo, Soyeong;Ahn, Nak-Kyoon;Lee, Chan Gi;Yoon, Jin-Ho
    • Journal of Powder Materials
    • /
    • v.25 no.3
    • /
    • pp.232-239
    • /
    • 2018
  • In this paper, the recovery and nanoparticle synthesis of Ag from low temperature co-fired ceramic (LTCC) by-products are studied. The effect of reaction behavior on Ag leaching conditions from the LTCC by-products is confirmed. The optimum leaching conditions are determined to be: 5 M $HNO_3$, a reaction temperature of $75^{\circ}C$, and a pulp density of 50 g/L at 60 min. For the selective recovery of Ag, the [Cl]/[Ag] equivalence ratio experiment is performed using added HCl; most of the Ag (more than 99%) is recovered. The XRD and MP-AES results confirm that the powder is AgCl and that impurities are at less than 1%. Ag nanoparticles are synthesized using a chemical reduction process for recycling, $NaBH_4$ and PVP are used as reducing agents and dispersion stabilizers. UV-vis and FE-SEM results show that AgCl powder is precipitated and that Ag nanoparticles are synthesized. Ag nanoparticles of 100% Ag are obtained under the chemical reaction conditions.

Covalent Interactions of Reactive Pentachlorophenol Metabolites with Cellular Macromolecules (Pentachlorophenol 대사물과 세포내 거대분자물의 반응에 관한 연구)

  • 정요찬;윤병수;이영순;조명행
    • Toxicological Research
    • /
    • v.13 no.3
    • /
    • pp.257-263
    • /
    • 1997
  • Pentachlorophenol(PCP) which ks widely used in wood preservation, pulp and paper mills, has led to a substantial envirortmental contamination. To get the reliable data for the effective health risk assessment with PCP, covalent binding potential of PCP to cellular macromolecules and glutathione(GSH) was investigated after intraperitoneal administration of $^{14}C-PCP$ to rats. PCP metabolites were able to bind covalently to serum albumin and hepatic protein in a dose- and time-dependent manner. Hepatic protein adducts of PCP metabolites were increased as a function of cytochrome P-450 activities, whereas, albumin adducts significantly decreased. Covalent binding of PCP metabolites with DNA or hemoglobin was not observed. GSH levels in liver tissue decreased over 12hrs, however, the level was recovered after 48hrs. Tetrachloro-1,4-benzoquinone (1,4-TCBQ), one of the most reactive PCP metabolites, conjugated with GSH very rapidly. Base on our results, we could conclude that PCP metabolized to reactive electrophilic metabolites by cytochrome P-450 isoenzymes and conjugated rapidly with neighboring protein or nonprotein sulfhydryl before reacting with DNA or hemoglobin. We propose that albumin adducts and mercapturic acids of PCP metabolites can be used good biomarker of recent PCP exposure.

  • PDF

Recovery of Roasting-Molybdenite Concentrate by Froth Flotation (부유선별법에 의한 제련용 몰리브덴 정광의 회수)

  • Park, Chul-Hyun;Jeon, Ho-Seok;Kim, Byoung-Gon;Han, Oh-Hyung
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.661-666
    • /
    • 2009
  • Froth flotation has been carried out in order to produce roasting-molybdenite concentrate from molybdenite ore in the Shin-yeomi mine. In our study, roasting-molybdenite (Mo 0.43%) from Shin-yeomi mine was recovered by varying the conditions of regrinding time, dosage of collector and alkalinity. Liberation and flotation efficiency more were effective at regrinding time of six minutes than at single grinding. Mo recovery curves increased considerably as dosage of kerosene increased, whereas Mo grade curves decreased gradually. The separation efficiency of molybdenite was effective when the dosage of collector (kerosene) was adjusted to 300 g/t. The molybdenite concentrate was agglomerated in the range of pH 5-7 and its separation efficiency increased to pH 9-10. The concentrate of 49.5% Mo grade ($MoS_2$, 82.6%) with 81.5% recovery from Shin-yeomi molybdenite ores was obtained under conditions of 20% pulp concentration, 300 g/t kerosene 325 g/t frother (AF65), 2.5 kg/t depressant ($Na_2SiO_3$), pH 9-10 and four cleaning times. In the future, a trial run that can separate up to 50% Mo grade from Shin-yeomi molybdenite ores will be performed.

Recovery of Metallic Pd with High Purity from Pd/Al2O3 Catalyst by Hydrometallurgy in HCl (염산 침출용액을 이용한 Pd/Al2O3 촉매에서 고순도 팔라듐 회수)

  • Kim, Ye Eun;Byun, Mi Yeon;Baek, Jae Ho;Lee, Kwan-Young;Lee, Man Sig
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.270-278
    • /
    • 2020
  • Palladium (Pd) has been widely used in various industrial applications such as jewelry, catalyst, and dental materials despite its limited resources. It has been gaining attention to recover Pd with high purity from the spent materials. This study investigated the optimum conditions for the leaching and recovery of metallic Pd. The leaching parameters are HCl concentration, temperature, time, concentration of oxidants, and pulp density. 97.2% of Pd leaching efficiency was obtained in 3 M HCl with 3 vol% oxidants at 80℃ for 60 min. The ratio of hydrogen peroxide to sodium hypochlorite played a critical role in the leaching efficiency due to the supply of Cl- ions in the leachate. Moreover, the complete recovery of Pd in the leachate was achieved at 80℃ with 0.3 formic acid/leachate after adjusting the pH value of 7. This situation was ascribed to the decomposition of formic acid into hydrogen gas and carbon dioxide at 80℃. ICP-AES and XRD characterized the recovered Pd powder, and the purity of the recovered powder was found to be 99.6%. Consequently, the recovered Pd powder with high purity could be used in circuits, catalyst precursors, and surgical instruments.