최근 시간에 따른 대량의 공간 객체들의 효과적인 저장과 처리의 필요성이 요구되면서 시공간 데이타베이스에 대한 필요성이 증가하였다. 이러한 시공간 데이타베이스에서 효과적인 질의 처리를 위하여 여러 가지 질의 최적화 기법이 연구되었고 그중 질의의 근사적인 결과를 계산하는 선택도 추정 기법이 활발하게 연구되었다. 선택도 추정 기법에는 샘플링 기반 기법, 히스토그램 기반 기법, 웨이블릿 기반 기법 등이 있고 그중 히스토그램 기법은 현재 상용 데이타베이스에서 널리 사용되고 있다. 하지만 지금까지의 시공간 질의 최적화 연구는 이동 객체의 미래 위치에 대한 선택도 추정에 치중되어 왔다. 본 논문에서는 과거의 시공간 데이타의 질의 최적화를 위하여 새로운 히스토그램인 T-Minskew의 구축 방법을 제안한다. 또한 T-Minskew를 이용한 효과적인 선택도 추정 기법을 제안하고 임계치 기법을 이용한 히스토그램의 효과적인 유지 기법을 통해 잦은 히스토그램 재구축을 방지하고 작은 추정 오류율을 유지하는 방법을 제안한다.
공간데이터베이스 시스템에서는 사용자에게 효과적인 공간데이터베이스 접근방법을 제공하기 위하여 공간 뷰를 지원하며 비실체화 방법과 실체화 방법으로 관리한다. 비 실체화 방법은 동일질의에 대한 반복적인 수행으로 서버 병목 현상과 네트워크 부하가 발생하는 문제점이 있고, 실체화 방법은 공간 기본 테이블 변경에 대한 실체화 뷰 관리 방법이 어렵고, 비용이 많이 든다는 문제점이 있다. 본 논문에서는 R-tree 재구성 방법을 이용한 공간 뷰 실체화 관리 기법(SVMT : Spatial View Materialization Technique)을 제안한다. 제안한 SVMT는 공간 뷰 객체 분포율 오차율 이용하여 공간 뷰를 실체화하는 기법으로, 공간 뷰 객체 분포율 오차가 오차 한계 범위내에 존재하면 공간 뷰를 실체화하고 광간 뷰 높이에 해당하는 노드를 공간 뷰에 대한 R-Tree의 루트로 사용하고, 오차 한계 범위를 벗어나면 공간 뷰를 실체화함과 동시에 R-Tree를 재구성하는 방법이다. 이 기법에서 공간 뷰에 대한 정보는 공간 뷰 정보 테이블(SVIT : Spatial View Materialization Technique)를 통하여 관리되며, 이 테이블의 레코드는 공간 뷰에 대한 정보를 저장하고 있다. SVMT는 실체화된 공간 뷰에 대한 질의수행을 통해 공간질의 처리 수행 속도를 빠르게하며, 이를 통하여 반복적인 질의 변환을 통해 발생하는 부가적인 질의 수행 비용을 제거한다. 따라서, 제안하는 기법은 다중 사용자, 동시 작업 환경에서 공간 뷰에 대한 빠른 접근 속도와 빠른 질의 응답을 제공하여 서버의 병목현상과 네트워크 부하를 최소화한다는 장점을 가진다.
SC-FDE(Single Carrier with Frequency Domain Equalizer) 전송 방식에서 채널의 다중경로를 통과한 신호들은 채널 지연 확산과 노이즈 영향으로 심하게 왜곡이 되거나 ISI(Inter-Symbol Interference)가 발생된다. 기존 UW(Unique-Word) 기반 SC-FDE 전송 방식중 하나인 반복적 채널 추정은 채널 길이를 안다고 가정하여 추정한 CIR(Channel Impulse Response)의 채널 길이 밖에 있는 노이즈 성분을 시간 영역에서 스무딩을 함으로써 노이즈 성분을 제거한다. 또한, 주파수 영역에서 채널 추정에 사용하는 UW를 복원하여 잔재하는 ISI 성분을 제거함으로써 채널 추정 성능을 향상시킨다. 본 논문은 채널 길이 안으로 있는 노이즈 성분 억압을 통한 채널 추정기법을 제안한다. 노이즈 성분을 억압하기 위해 시간 영역에서 추정된 CIR로 채널 길이 밖에 있는 노이즈 성분을 이용하여 노이즈의 표준편차를 추정하고 본래 신호 샘플에 영향이 안가도록 노이즈 표준편차 이득의 기준을 만든다. 추정된 노이즈의 표준편차와 이득을 이용하여 CIR 샘플들이 기준값 이하 일 때 채널 길이 안에 있는 노이즈 성분을 스무딩을 한다. 시뮬레이션 결과는 채널의 MSE(Mean Square Error)와 BER(Bit Error Rate)을 통하여 제안된 기법을 적용할 때 성능 개선이 나타남을 확인 할 수 있었다.
최근의 나선형 CT와 MDCT는 기존의 고식적 CT보다 X-선 조사시의 겹침 현상과 영상 재구성에 있어서의 보간삽입처리로 인해 보다 높은 선량을 환자에게 주게 되었다. MDCT와 나선형 CT장치가 보다 많은 의학적 정보를 제공하는 것에도 불구하고 환자가 받는 방사선 노출은 기존의 고식적 CT검사에 비해 $2{\sim}4$배 정도로 증가되고 있는 실정이므로, 그 잠재적 위험성을 아무리 강조해도 지나침이 없다. CT장치에서의 보다 많은 X-선에 관련된 자료들, 특히 선량효율적 디자인이나 X-선 조절 소프트웨어에 대한 자료들이 필요하다. 왜냐하면 CT장치의 디자인 요소는 임상적 진단에 있어서 환자선량을 성공적으로 줄일 수 있는 중요한 요소이기 때문이다. 이에 본 연구에서는 최근 급격히 확산되어 사용되고 있는 여러 단계의 MDCT의 z-축 선량효율을 측정하여 SDCT와 비교하였다. 그리고 MDCT에서 스캔 시 채택하는 focal spot size와 beam collimation, 검출기 조합 등을 비롯한 파라메터들의 변화에 따른 z-축 선량효율을 파악하여 다음과 같은 결과를 얻었다. 1. SDCT가 z-축 기하학적 선량효율이 가장 높았고, 4 슬라이스 MDCT가 가장 낮았다. MDCT 중에서는 small beam collimation 적용 시 64 MDCT가 기하학적 선량효율이 가장 높았고 16, 8, 4 슬라이스 MDCT 순이었으며, large beam collimation 적용 시에는 small focal spot에서는 8 MDCT가, large focal spot에서는 16 MDCT가 가장 높았다. 2. MDCT의 경우 large focal spot에 비해 small focal spot의 z-축 기하학적 선량효율이 최저 0.67%에서 최대 13.62%의 범위에서 높았다. 3. MDCT의 경우 small beam collimation에 비해 large beam collimation의 z-축 기하학적 선량효율이 $3.13{\sim}51.52%$의 범위에서 높았다. 4. 동일한 focal spot size와 beam collimation을 채택한 상태에서 detector combination 차이에 따른 z-축 기하학적 선량효율은 4 슬라이스 MDCT의 모든 경우와 8 슬라이스 MDCT의 large beam collimation에서 일정하였다. 하지만 8 슬라이스 MDCT의 small beam collimation과 16 슬라이스 MDCT에서는 z-축 기하학적 선량효율이 차이를 보였으며 변화의 일률성은 없었다. 5. 동일한 스캔 파라메터를 적용시 나선형 스캔과 고식적 스캔 모드의 z-축 기하학적 선량효율은 동일하였으며, pitch를 변화시키거나 영상재구성 시 슬라이스 두께와 간격을 변화시켜도 z-축 기하학적 선량효율은 변화가 없었다. 결론적으로, CT검사 시 환자가 받는 X-선 피폭선량을 줄이기 위해 연구자는 CT장치의 선량효율에 대해 각별히 주의하여야 하며, Z-축 선량효율성을 높이는 동시에 최적의 임상적 정보를 보존할 수 있는 스캔 파라메터를 선택하여야 한다.
원격 관측 자료인 위성 자료는 한계점이 있으며, 특히 광학 관측기를 활용하면 구름이나 기타 요인에 의해 손실 자료가 발생한다. 본 연구에서는 MODerate resolution Imaging Spectrometer(MODIS)의 관측 자료 중, 지표면 온도 자료를 대상으로 손실 자료를 복원하기 위한 방법인 평균 편차 방법, 회귀 분석 방법, 지역 변동 방법의 세 가지 복원 방법을 개발하였다. 검증을 위해 2014년과 2015년의 위성 자료에서 관측 비율을 근거로 사례를 선택하였다. 검증 자료에서 확인된 지역 변동 방법의 평균 제곱근 편차(RMSE)는 일부 사례에서 약 2 K 이상으로 다른 복원 방법에 비해 낮은 정확도를 보였으며, 회귀 분석 방법의 RMSE는 평균 약 1.13 K으로 대부분의 사례에서 가장 좋은 결과를 보였다. 평균 편차 방법 사용 시, RMSE는 회귀 분석 방법 시와 유사하게 약 1.32 K으로 나타났다.
얼굴 인식 분야는 오래전부터 꾸준히 연구되어 왔지만, 아직도 실용적인 얼굴 인식은 이루어지지 않고 있다. 이는 실제 얼굴 인식 시스템의 입력 영상의 경우, 실험실에서 획득된 얼굴 영상과는 달리 안경이나 스카프, 헤어스타일 등에 의해서 가려진 얼굴 영상인 경우에 인식 성능이 매우 저하되는 것에 기인한다. 이러한 비 얼굴 요소를 처리하기 위해, 최근 수년간 다양한 방식의 비 얼굴 요소처리 방법이 있었으나, 만족할만한 성능을 보이지 못했다. 본 논문에서는, 최근 관련 방법 중에서 특징 공간에서 최소거리의 볼을 찾아 근사값을 추정하는 방식인 SVDD를 이용하는 비 얼굴 요소 복원 방법을 제안하고, 실험을 통해 성능을 평가한다. 제안 방법의 실효성을 검증하기 위해, 비얼굴 요소 부분을 점진적으로 증가시켜 복원하는 실험 등 을 통해 실험한 결과, 제안 방법은 상당한 수준의 실효성을지니고 있음을 확인하였다.
멀티캐스트를 이용하는 실시간 응용에서는 끊임없이 서비스를 제공하는 것이 중요하다. IP 멀티캐스트와 응용계층 멀티캐스트(ALM)를 이용하는 하이브리드 멀티캐스트에서는 혼잡 등 네트워크 상황에 적응하기 위하여 전송경로의 재구성이 발생한다. 이로 인하여 종단 간 지연시간이 증가하고 실시간 서비스의 품질이 저하되는 문제가 발생한다. 본 논문에서는 이런 문제를 다계층 전송경로를 구성하여 해결하고자 한다. 제안방법에서는 하이브리드 멀티캐스트 구성을 위해서 제어서버와 각 멀티캐스트 도메인(MD)에 존재하는 응용계층 오버레이 호스트(Application Layer Overlay Host)를 둔다. 제어서버는 MD에 가입한 ALOH들로 부터 제어정보를 받아 홉 수를 기반으로 그룹을 생성하고, 모든 ALOH들에게 전송한다. 각 MD의 ALOH는 타 MD의 ALOH에게 오버레이로 패킷을 전송하는 역할과 다계층 전송경로를 구성하는 역할을 수행한다. 다계층 전송경로는 제어서버로 부터 전송받은 제어정보와 이웃한 ALOH 간 지연시간을 이용하여 우선순위별로 구성된다. 이렇게 완성된 다계층 전송경로 중 혼잡이 발생하거나 ALOH의 부재 시에는 가장 우선순위가 높은 전송경로를 선택하여 종단 간 지연시간을 줄이도록 한다. 시뮬레이션 결과는 제안방법이 혼잡상태에서 종단 간 지연시간을 평균 289ms 이하로 줄일 수 있었음을 보여준다.
패킷네트워크에서 사용하는 음성부호화기는 자체적으로 PLC (Packet Loss Concealment) 알고리즘을 사용하고 있지만 서비스에 적합할 만큼 좋지 않다. 더욱이 연속적인 패킷 손실에 대해서는 많이 취약하다. PLC 알고리즘은 크게 송신단 기반의 알고리즘과 수신단 기반의 알고리즘으로 나뉜다. 송신단 기반의 알고리즘은 추가정보를 전송하기 때문에 음질개선에 큰 성능을 갖는 반면 데이터 전송율이 높아지고 추가 지연이 발생하며 상호간의 호환이 불가능하다. 수신단 기반의 알고리즘은 수신된 데이터에 기반하기 때문에 추가지연이나 정보가 필요 없으나 음질개선에 한계가 있다. 본 논문에서는 RTP 헤더 정보 중 사용하지 않는 확장 헤더 데이터 (Extension Header Data: 32 bit)부분에 PLC를 위한 추가정보를 전송하는 방법을 제안한다. 이렇게 함으로써 송신단 기반의 알고리즘이 갖는 호환성 문제를 해결하고 음질 개선 성능을 향상 시킬 수 있다. 추가적으로 발생하는 지연 (delay)는 이미 수신단에서 네트워크상의 지연을 조정하기 위해 지터 버퍼 (jitter buffer)를 갖고 있기 때문에 제안하는 알고리즘으로 인해 발생하는 추가 지연은 없다. G.729 PLC를 위한 추가 정보는 LP 파라미터 합성용 MA필터 인덱스, 여기신호, 여기신호 이득 및 잔여신호 이득 파라미터로 프레임당 16 bit를 할당한다. 이는 RTP payload 전송 시 음성 데이터를 두 프레임인 20 ms 단위로 전송하기 때문이다. 성능 평가 결과 기존 대비 13.5%의 성능 향상을 보였다.
운영 체제의 코어에 Intel PT가 포함된 경우, 크래시 발생 시 디버거는 프로그램 상태를 검사할 수 있을 뿐만 아니라 크래시를 발생시킨 제어 플로우를 재구성할 수 있다. 또한, 커널 패닉 및 기타 시스템 정지와 같은 상황을 디버그하기 위해 실행 트레이스 범위를 전체 시스템으로 확장할 수도 있다. 2세대 PT인 WinIPT 라이브러리는 Windows 10 (버전 1809/Redstone 5)에서 제공하는 IOCTL 및 레지스트리 메커니즘을 통해 프로세스 별 및 코어 별 트레이스를 실행할 수 있는 추가 코드가 포함된 Intel PT 드라이버를 포함하고 있다. 즉 기존 1세대 PT에서 비정규화된 방식으로만 제한적인 접근이 가능했던 PT 트레이스 정보를 2세대 PT에서는 운영 체제에서 제공하는 IOCTL 및 레지스트리 메커니즘을 통해 프로세스 별 및 코어 별 트레이스를 실행할 수 있게 되었다. 본 논문에서는 1/2세대 PT를 이용하여 윈도우 환경에서 PT 데이터 패킷의 수집 저장 디코딩 및 악성코드 검출을 위한 방법을 비교 설명하였다.
Objective : To obtain more reliable sample in stereotactic biopsy, authors adopted proton chemical shift imaging ($^1H$-CSI)-directed biopsy. Until now, proton single voxel spectroscopy($^1H$-SVS) technique has been reported as a technique using metabolic information in stereotactic biopsy. The authors performed $^1H$-CSI with a stereotactic headframe in place and evaluated the pathologic results obtained from local metabolic information through $^1H$-CSI. Methods : $^1H$ CSI-directed stereotactic biopsy was performed in four patients. $^1H$-CSI and conventional Gd-enhancement stereotactic MRI was done simultaneously after application of the stereotatic frame. After reconstruction of metabolic maps of NAA/Cr, Cho/Cr, and Lactate/Cr ratios, the focal areas of increased Cho/Cr ratios and decreased NAA/Cr ratios were selected for target sites in the MR images Results : There was no difficulty in performing $^1H$-CSI with the stereotactic headframe in place. In pathologic examinations, the samples taken in area of increased Cho/Cr ratios and decreased NAA/Cr ratios showed the features of increased cellularity, mitoses and cellular atypism, thus facilitated the diagnosis. The pathologic samples taken from the area of increased Lactate/Cr ratios showed prominent feature of necrosis. Conclusion : $^1H$-CSI was feasible with stereotactic head frame in place. The final pathologic results obtained in our samples were concordant with the local metabolic informations from $^1H$-CSI. Authors believe that $^1H$ CSI-directed stereotactic biopsy may provide us advantages in obtaining more reliable tissue specimen in stereotactic biopsy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.