협력적 여과 시스템은 내용 기반 여과 시스템과는 대조적으로 아이템에 대한 정보를 반영하지 않으며, 또한 사용자가 자신의 흥미에 대한 정보를 제공하지 않았을 경우 추천을 할 수 없다는 단점을 갖는다. 본 논문에서는 협력적 여과 시스템의 단점을 해결하기 위하여 연관 아이템 트리를 이용한 추천 에이전트를 제안한다. 제안된 방법은 벡터 공간 모델과 K-means 알고리즘을 이용하여 사용자를 군집시킨 후 그룹의 대표 평가값을 추출한다. 다음으로, 군집된 그룹별로 아이템간의 상호정보량을 계산하여 아이템간의 연관도를 파악하며, 이를 기반으로 연관 아이템 트리를 생성한다. 이와 같이 생성한 각 그룹의 연관 아이템 트리와 그룹의 대표 평가값을 이용하여 새로운 사용자에게 아이템을 추천한다. 제안된 추천 에이전트는 사용자 정보와 아이템 정보를 병합하여 새로운 사용자에게 아이템을 추천하며, 아이템간의 유사도를 계산하기 위하여 상호정보량을 사용하고 이를 기반으로 연관 아이템 트리를 생성함으로써 초기에 아이템에 대하여 평가한 정보가 부족한 사용자에게 정확도가 높은 아이템을 추천할 수 있다는 장점을 갖는다. 제안된 방법은 MovieLens 추천 시스템의 데이터 집합을 사용하여 기존의 방법과 비교하였다.
추천 시스템은 정보의 홍수 속에서 사용자로 하여금 자신에게 더욱 가치 있고 흥미로운 정보를 선별할 수 있도록 돕는 자동화된 정보 여과 시스템이다. 최근 분산 컴퓨팅 환경에 대한 연구가 활발히 진행되면서, 지금까지의 중앙 서버에서 모든 정보를 관리하는 중앙 집중 방식의 추천 시스템에서 P2P 환경의 접근 방식으로 선회하고 있다. 협력적 여과는 상업적인 추천 시스템에서 가장 많이 사용하는 정보 여과 기법이지만, 그 성공에도 불구하고 확장성(scalability)과 데이터의 희박성(sparsity), 악의적인 사용자의 공격(shilling attack)에 대한 방어 등에 관련된 여러 제약을 갖는다. 중앙 집중 방식에서 분산된 방식으로의 변화는 추천의 신뢰성과 개인 정보의 남용 가능성에 관련한 문제점을 일부 해결할 수 있으나, 조작된 사용자 프로파일을 사용하여 추천을 조작하려는 의도를 갖는 악의적인 사용자의 공격에는 중앙 집중 방식과 마찬가지로 취약할 수 있다. 본 논문에서는 개인 정보의 오남용과 악의적인 사용자의 공격에 관련된 문제점을 해결하고, 분산된 환경에서 효과적인 협력적 여과를 수행하여 추천의 성능과 정확성을 높이기 위한 멀티 에이전트 기반의 추천 프레임워크를 제안한다. 추천의 신뢰성을 높이기 위해 사용자간의 신뢰 정보를 사용하며, 각 사용자의 개인 에이전트와 이동 에이전트간의 정보교환을 통해 효과적으로 신뢰 정보를 전파하고 분산된 유사도 계산의 효율성을 높였다.
최근 사용자에 대한 많은 정보를 얻는 것이 가능해지면서, 데이터마이닝 기법이나 Contents 추천 기법을 이용한 맞춤형 서비스가 가능하게 되었다. 특히, 대부분의 사람들에게 TV 프로그램 시청은 여가생활시간에서 가장 높은 비중을 차지 하고 있다. 따라서, 보다 지능적인 TV 프로그램 서비스를 제공하는 기술에 대하여 관심이 고조되고 있다. 본 논문에서는 TV-Anytime을 이용하여 개인화된 Electronic Program Guide (EPG)를 생성하고, 개인화된 EPG 정보를 활용하여 시청자에게 맞춤형 TV 프로그램 서비스를 제공하는 시스템에 대한 연구 결과를 제시한다. 또한 시청자의 시청패턴과 TV 프로그램 선호도를 바탕으로 시청자가 원하는 프로그램을 추천하는 TV Program Recommender Agent와 방송 및 TV 프로그램에 대한 대화를 담당하는 TV Program Helper Agent, 시스템 조정 및 메시지 전달을 담당하는 Coordinator Agent로 이루어진 멀티에이전트 기반 시스템 구조를 제시한다.
소비자가 최적의 상품을 선택하기 위해서는 충분한 상품정보를 파악하여 상품정보를 일일이 조사해야하는 번거로움이 생긴다. 이러한 문제점을 해결하기 위하여 여러 가지 상품추천방법이 제안되고 있으나 상품추천 과정에서 고객의 기호 변화를 다루는 연구가 부족하다. 본 논문에서는 소비자의 기호 변화에 적응하는 개인화 된 상품 추천을 위하여 베이지안 네트워크를 모델링하여 상품 구매에 따르는 선호도를 분석하고, 추천된 상품에 대한 사용자의 행동으로 관심 정도를 측정하여 추천 리스트를 제공한다.
오늘날 인터넷이 확산되어감에 따라, e-CRM에 대한 관심이 증대되고 있다. 그 중에서도 특히 '추천시스템'은 e-CRM의 여러 응용분야 중에서도 실무적으로 그리고 학문적으로 가장 활발하게 연구되고 있는 분야 중 하나다. 추천을 위한 여러가지 방법들 중에서, 지금까지 주류를 이뤄온 방법들은 협동 필터링(Collaborative Filtering) 기법과 내용 기반(Content-Based) 접근법이다. 그러나 이러한 기존 방법들은 몇 가지 태생적인 한계점으로 인해 고객의 구매 이력이 많지 않은 중소형 인터넷 쇼핑몰에 적용하기 어렵다는 단점이 있다. 이에, 본 연구에서는 고객의 인구통계 및 구매정보에 2가지 데이터마이닝 기법들(연관 관계 기법과 분류 기법)을 적용하고, 이 결과를 조정 에이전트를 통해 결합하는 형태의 새로운 추천 시스템의 모형과 시스템 구조 체계를 제안한다. 제안된 연구 모형의 유용성을 검증하기 위해, 본 연구에서는 실제 사례에 적용한 웹 기반 프로토타입을 개발, 활용하였다. 프로토타입의 유용성을 실제 사용자들로부터 설문을 통해 조사해 본 결과, 본 연구에서 제안한 추천모형이 생성한 맞춤 정보가 사용자들에게 매우 유익하게 인지됨을 확인하였다.
A personalized product recommendation is an enabling mechanism to overcome information overload occurred when shopping in an Internet marketplace. Collaborative filtering has been known to be one of the most successful recommendation methods, but its application to e-commerce has exposed well-known limitations such as sparsity and scalability, which would lead to poor recommendations. This paper suggests a personalized recommendation methodology by which we are able to get further effectiveness and quality of recommendations when applied to an Internet shopping mall. The suggested methodology is based on a variety of data mining techniques such as web usage mining, decision tree induction, association rule mining and the product taxonomy. For the evaluation of the methodology, we implement a recommender system using intelligent agent and data warehousing technologies.
제품의 품질 및 가격뿐만 아니라 물질적 풍요로움과 더불어 다변화 되어가는 생활 환경 속에서 소비자의 감성과 선호도를 파악하는 것은 제품 판매 전략의 중요한 성공요소가 되고 있다. 이를 위하여 제품의 기능적 측면뿐만 아니라 개개인의 정서적 감정과 선호도가 반영된 제품의 설계나 디자인 또한 요구되고 있다. 본 연구에서는 사용자의 감성과 선호도를 중심으로 소재를 개발하는 방법의 하나로 협력적 필터링 개인화 기법을 응용하여 패션 디자인 추천 에이전트 시스템(FDRAS-pro)을 제안한다. 텍스타일 기반의 협력적 필터링 기술에서, 예측에 사용될 이웃의 수를 결정하기 위해서 Representative Attribute-Neighborhood 방법을 사용한다. 사용자들간의 유사도 가중치를 계산하기 위해서 피어슨 상관계수(Pearson Correlation Coefficient)를 사용한다. 소재에 대한 사용자의 감성이나 선호도에 대한 텍스타일의 대표 감성 어휘를 추출함으로써 소재 개발을 위한 감성 어휘 데이타베이스를 구축한다. FDRAS-pro는 구축된 감성 어휘 데이타베이스를 기반으로 성향이 비슷한 사용자에게 텍스타일 디자인을 추천한다. 디자인 요소에 따른 감성 분석을 하기 위해서, 텍스타일 디자인을 9가지 디자인 요소(디자인 소재, 모티브대 배경비율, 모티브의 변화도, 해석법, 모티브의 배열, 모티브의 명료성, 명도차, 색상차, 채도차)에 따라 분석하였다. 패션 디자인 추천 시스템으로 개발하여 시스템의 논리적 타당성과 유효성을 검증하기 위해 실험적인 적용을 시도하고자 한다.
제품의 품질 및 가격 뿐만 아니라 물질적 풍요로움과 더불어 다변화 되어가는 생활 환경 속에서 소비자의 감성과 선호도를 파악하는 것은 제품 판매 전략의 중요한 성공요소가 되고 있다. 이를 위하여 제품의 기능적 측면 뿐만 아니라 개개인의 정서적 감정과 선호도가 반영된 제품의 설계나 디자인 또한 요구되고 있다. 본 연구에서는 소재 개발의 프로세스가 고객 중심으로 변화하는 것에 대응하여 사용자의 감성과 선호도를 중심으로 소재를 개발하는 방법의 하나로 협력적 필터링 개인화 기법을 응용하여 섬유 패션 디자인 추천 시스템을 제안한다. Textile 기반의 협력적 필터링 시스템에서 예측에 사용될 이웃의 수를 결정하기 위해서 Representative Attribute-Neighborhood를 사용한다. 이웃들간의 사용자 유사도 가중치는 피어슨 상관 계수(Pearson Correlation Coefficient)를 사용한다. 소재에 대한 사용자의 감성이나 선호도에 대한 Textile의 대표 감성 형용사를 추출함으로써 소재 개발을 위한 감성 형용사 데이터 베이스를 구축한다. 구축된 감성 형용사 데이터 베이스를 기반으로 성향이 비슷한 사용자에게 Textile을 추천한다. 사용자 선호도 예측과 Textile 기반의 협력적 필터링 기술을 이용한 섬유 패션 디자인 추천 에이전트를 구축하여 시스템의 논리적 타당성과 유효성을 검증하기 위해 실험적인 적용을 시도하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.