• 제목/요약/키워드: recommender

검색결과 526건 처리시간 0.022초

SNS 기반 e커머스 시스템 개발 (Development of e-Commerce System Based on Social Network Service)

  • 이동규
    • 디지털융복합연구
    • /
    • 제16권1호
    • /
    • pp.153-158
    • /
    • 2018
  • 본 논문은 인터넷 쇼핑 상품의 허위 사용 후기, 과장 광고, 상품이나 공급업체에 대한 신뢰도 부족 등 커머스 서비스가 가지는 기본적인 문제점을 개선하기 위해 SNS 서비스에 내재된 신뢰형 서비스 개념을 커머스 도메인과 융합하여 "신뢰성 높은 SNS 기반 커머스 서비스"라는 새로운 형태의 시스템을 개발하였다. 본 논문에서 개발된 내용은 첫째, 서비스 제공을 위한 사용자용 커뮤니티 기능과 둘째, 커머스 기능 그리고 셋째, SNS와 커머스 연계 기능 개발이다. 본 논문에서 제시한 신뢰성 있는 상품 정보를 통해 판매자는 상품에 대해 객관적인 안심구매 정보를 구매자에게 제공할 수 있게 되어 실제 구매로 이어지는 가능성을 높여 매출 증대를 기대할 수 있다. 구매자는 안심구매 정보를 이용하여 양질의 제품을 안심하고 구매할 수 있어 만족도가 커지고, 서비스 제공자는 신뢰성 있는 사이트로 구매 회원들에게 알려지게 되어 전자상거래 활성화 및 새로운 커머스 시장 개척에 기여할 것으로 판단된다.

메모리 기반 협력필터링을 위한 평가 등급 범위를 이용한 유사도 척도 (A Similarity Measure Using Rating Ranges for Memory-based Collaborative Filtering)

  • 이수정
    • 정보교육학회논문지
    • /
    • 제17권4호
    • /
    • pp.375-382
    • /
    • 2013
  • 협력 필터링은 사용자가 선호했던 항목들의 기록을 토대로 항목을 추천하는 방법으로서 상업 사이트에서 매우 널리 사용되어 왔다. 이 방식의 기본 개념은 유사한 사용자들을 찾아서 그들의 평가등급을 통합하여 새로운 항목 추천에 이용하는 것이다. 따라서 유사도의 정확한 측정은 추천 성능에 매우 중요한 일이다. 본 논문에서는 사용자가 과거에 부여했던 평가등급들을 기준으로 하여 상대적으로 각 평가치를 다루는 새로운 유사도 공식을 제안한다. 광범위한 실험을 통해 제안된 공식이 기존 공식들보다 더 신뢰할 수 있음을 밝혔는데, 이는 극단적인 유사도값의 발생이 현저히 감소하였고, 유사도가 큰 이웃들만을 참조하였을 때 성능이 개선되었기 때문이다. 특히 실험 결과, 제안 공식은 평가 범위가 큰 데이터셋에 대해 기존 공식들보다 우수한 성능을 나타냈다.

대규모 복잡 정보에서 신뢰 클러스터를 이용한 추천 정확도 향상기법 설계 (Design a Method Enhancing Recommendation Accuracy Using Trust Cluster from Large and Complex Information)

  • 노기섭;오하영;이재훈
    • 한국정보통신학회논문지
    • /
    • 제22권1호
    • /
    • pp.17-25
    • /
    • 2018
  • 최근 ICT기술의 발전과 스마트 기기의 급격한 보급으로 엄청난 양의 정보가 생성되고 있다. 추천 시스템은 과도한 정보제공(information overload)으로부터 정보 수용자의 적절한 판단을 도와주고, 정보 제공자에게는 기업의 이윤과 업체홍보 효과를 증대 시킬 수 있는 해결책으로 등장하였다. 추천 시스템은 다양한 접근법으로 구현이 가능하지만, 소셜 네트워크 정보로 성능을 향상시킬 수 있는 방법으로 제시되었다. 그러나 추천 시스템 내의 사용자간에 형성되는 신뢰 클러스터의 정보를 활용하는 방안은 연구되지 못하였다. 본 논문에서는 온라인 리뷰에서 생성되는 클러스터에서 클러스터 내부 객체 간 영향성과 트러스터-트러스티 간 정보를 이용하여 추천 시스템의 성능을 향상시키는 방식을 제안하였다. 제안하는 방식을 구현하고 실제 데이터를 활용하여 실험한 결과 기존의 방식들보다 예측 정확도가 향상됨을 확인하였다.

사용자 성향의 시간적 변화를 고려한 협업 필터링 알고리즘에 관한 연구 (Study on Collaborative Filtering Algorithm Considering Temporal Variation of User Preference)

  • 박영용;이학성
    • 한국지능시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.526-529
    • /
    • 2003
  • 추천 시스템 또는 협업 필터링은 특정 사용자에게 잠재적으로 흥미가 있거나 가치가 있는 항목을 분류하는 방법이다. 유사한 성향을 갖는 사용자는 유사한 형태의 항목을 좋아하리라는 가정 하에, 이 방법은 사용자들의 성향에 관한 데이터베이스를 이용하여 아직 평가되지 못한 항목에 대한 평가값을 예측하는데 사용된다. 보통 추천하고자 하는 사람의 성향은 시간에 따라 변할 수 있고 이러한 시간적인 변화는 사용자 성향에 대한 분류 혹은 예측에 대한 정확성을 떨어뜨릴 수 있다. 본 논문에서는 협업 필터링 알고리즘의 예측 성능을 향상하기 위해서 사용자 성향의 시간적 변화를 이용한 방법을 제안하고자 한다. 이를 위해 기존의 통계적 협업 필터링의 일반적인 형태인 GroupLens 시스템의 상관 가중치가 최근 사용자의 유사성을 반영하기 위해 변형되었다. 제안된 방법은 EachMovie 데이터셋을 이용해 평가하였고 GroupLens 시스템과 비교하여 더 나은 예측 결과를 보였다.

전자상거래 고객가치 요인의 한·중 비교 (A Comparison on the Factors Influencing Customer Values in Electronic Commerce between Korea and China)

  • 이현규;한재호
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제21권4호
    • /
    • pp.155-183
    • /
    • 2012
  • Means-Ends Network model was used to identify factors of means objective(means supplied by vendor) and fundamental objectives(purchasing motivations) for purchasing decision-making structure and dimensions of customer values on purchasers of internet shopping mall in Korea and China. In Means-Ends Network 6 factors(shopping travel, shipping assurance, vendor trust, online payment, product choice, and recommender systems) were found as a means objectives and 3 factors(shopping convenience, internet environment, customer support) as a fundamental objectives of shopping. However the results of hypotheses test for Means-Ends Network show some important differences between two countries. Something important to notice here is that Chinese customers shopping in China recognize shipping assurance factor and vendor trust factor as important factors satisfying all fundamental objectives unlike as in the case of our country. As these two factors are attribution factors responsible to the sellers, it is identified that customers do not trust the sellers and sellers have not met the expectations of customers. Therefore, these results show that the seller efforts assuring the reliability of the seller themselves, such as conducting its own compensation scheme are more important rather than the establishment of the guarantee institution to guarantee reliability and delivery assurance of sellers and implementation of legal and institutional apparatus such as the settlement of e-commerce licence system. Though this study presents such an important marketing implications, it can be pointed out that the limits are this research was done on the general Internet shopping malls without considering the Internet shopping mall types of diversity, the survey was designed around the student samples for convenience of the investigation because it was an international survey and the collected data has been limited to the western coast cities, such as China's Beijing, Shanghai, and Dalian.

부분적 관찰정보기반 견고한 안드로이드 앱 추천 기법 (POMDP Based Trustworthy Android App Recommendation Services)

  • 오하영;구은희
    • 정보보호학회논문지
    • /
    • 제27권6호
    • /
    • pp.1499-1506
    • /
    • 2017
  • 스마트폰의 사용 및 다양한 앱 들의 출시 등이 기하급수적으로 증가되면서 악성 앱 또한 동시에 증가됐다. 기존의 앱 추천 시스템들은 온라인상에서 보이는 다른 사용자들의 평점, 댓글 및 인기 카테고리 등의 정적인 정보 분석을 기반으로만 동작한다는 한계가 있었다. 본 논문에서는 처음으로 스마트폰에서 실제로 사용되는 앱의 동적인 정보들을 현실적으로 사용하여 정적인 정보와 동적인 정보를 동시에 고려하는 견고한 앱 추천 시스템을 제안한다. 즉, 본 논문에서는 앱의 사용되는 시간, 앱의 사용 빈도수 및 앱과 앱 간의 상호 작용과 안드로이드 커널과의 접촉 횟수 등을 측정 가능한 수준에서 부분적으로 반영하여 견고한 안드로이드 앱 추천 시스템을 제안한다. 성능평가 결과 제안하는 기법이 견고하고 효율적인 앱 추천 시스템임을 증명했다.

사용자 정보를 이용한 모바일 추천 기법 (The User Information-based Mobile Recommendation Technique)

  • 윤소영;윤성대
    • 한국정보통신학회논문지
    • /
    • 제18권2호
    • /
    • pp.379-386
    • /
    • 2014
  • 모바일 기기의 사용이 급증하면서 앱 스토어를 이용하는 사용자들 또한 증가하고 있다. 그러나 앱 스토어들은 대부분 단순한 랭킹 방식의 추천을 사용하므로 추천의 정확성이 떨어진다. 본 논문에서는 사용자에게 더 적합한 아이템을 추천하기 위해 사용자 정보 가중치와 아이템의 최근 선호 정도를 반영한 기법을 제안한다. 제안하는 기법은 데이터 셋을 카테고리별로 구분한 후 협업필터링 기법에 사용자 정보 가중치를 적용하여 예측값을 추출한다. 카테고리별로 아이템에 대한 최근 선호 정도를 반영하기 위해 특정 기간을 지정한 아이템 평가값 평균을 구한다. 최종적으로 두 결과 값을 결합하여 아이템을 추천한다. 실험을 통해 제안한 기법이 기존의 아이템 기반, 사용자 기반 기법보다 추천의 정확성과 적합성이 향상되는 것을 확인하였다.

항목 내용물의 클러스터 정보를 고려한 협력필터링 방법의 확률적 재해석 (Probabilistic Reinterpretation of Collaborative Filtering Approaches Considering Cluster Information of Item Contents)

  • 김병만;이경금;오상엽
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권9호
    • /
    • pp.901-911
    • /
    • 2005
  • 인터넷의 상업적 이용이 증가하고 인터넷에서 쉽게 얻을 수 있는 정보의 양이 풍성해지면서 정보 필터링 (information filtering) 기법은 대량의 정보 공간에서 사용자의 요구와 기호에 맞는 항목을 찾는 과정에 널리 사용되고 있다. 많은 협력필터링 (collaborative filtering) 시스템이 사용자 평가를 기반으로 사용자나 항목들 사이의 유사성을 찾아내고 이를 바탕으로 추천을 해왔지만 사용자 편향 (user bias), 비전이 연관 (non-transitive association), cold start 문제와 같이 성능을 높이기 위해 해결해야 할 문제들이 남아있다. 이 세 가지 문제는 사용자나 항목들 사이에 더 정확한 유사도를 찾아내는 과정에 장애가 된다. 본 논문에서는 이러한 문제들을 해결하기 위해 제안된 UCHM 및 ICHM 방법을 확률적으로 재해석하였다. 이 확률적 모델은 객체 (사용자 또는 품목)들을 그룹들로 구분하고 각 그룹 내에서 사용자 평가가 가우시안 분포를 따른다는 가정 하에 사용자들이 무엇을 선호할 것인지 예측한다. 실세계 자료에 대한 실험 결과, 제안된 방식이 다른 방식들과 비교할 만한 성능을 보인다는 것을 확인할 수 있었다.

구매순서를 고려한 개선된 협업필터링 방법론 (Considering Customer Buying Sequences to Enhance the Quality of Collaborative Filtering)

  • 조영빈;조윤호
    • 지능정보연구
    • /
    • 제13권2호
    • /
    • pp.69-80
    • /
    • 2007
  • 고객의 선호도는 시간에 따라 변화하지만 기존 협업필터링기법(Collaborative Filtering : CF)은 정적인 데이터만을 다룬다. 이는 기존 CF 기법이 특정 기간 동안 고객의 구매 여부만 고려할 뿐 고객의 구매순서를 사용하지 않기 때문이다. 따라서 기존 CF 기법은 고객의 동적인 데이터인 구매순서를 고려함으로써 추천의 품질을 높일 가능성이 있다. 본 연구에서는 고객의 구매순서를 활용함으로써 CF 기법의 추천 품질을 향상시키는 새로운 상품추천 방법론을 제안한다. 즉, 군집분석기법인 자기조직화지도(Self-Organizing Map : SOM)를 활용하여 고객의 구매순서를 파악한 후 연관규칙탐사(Association Rule Mining : ARM)를 사용하여 고객들의 구매순서 중 일정 정도의 통계적인 타당성을 갖는 구매순서 패턴을 찾아내어 이를 추천 시에 활용한다. 대형 백화점의 구매자료에 적용하여 제안한 방법론의 효과성을 실험한 결과 제안한 방법론이 기존 CF 기법보다 우수한 추천품질을 가지고 있음이 실증적으로 확인되었다.

  • PDF

의료인 치과위생사의 전문능력 향상을 위한 치위생학과 교육과정 제안 (Dental hygiene curriculum proposals to improve the ability of dental hygienists as medical professionals)

  • 이은선;정재연;하정은;황수정;황윤숙
    • 한국치위생학회지
    • /
    • 제18권6호
    • /
    • pp.891-902
    • /
    • 2018
  • Objectives: The purpose of this study was to propose contents of a curriculum and training program for dental hygienists as medical professionals by surveying the opinions of clinical dental hygienists and dental hygiene professors. Methods: The subjects were 192 clinical dental hygienists and 193 dental hygiene professors. They answered questionnaires that consisted of grading each task based on its importance: a) for dental hygiene students to learn, b) to perform autonomously in clinical practice, and c) the expectancy of the task to change when dental hygienists become medical professionals. Data analysis was performed using an independent sample T test to capture differences between clinical dental hygienists and dental hygiene professors. The terms in the answers of open-ended questionnaires were extracted. We used R 3.5.0, R Recommender, and Wordcloud software packages. Results: Calculus removal had the highest scores for dental hygiene students to learn and expectancy to change when dental hygienists become medical professionals. Physiotherapy of temporomandibular disorders (TMD), planning, performing, and assessment of community oral health programs had the lowest scores in autonomy in clinical practice. The dental hygiene professors gave higher scores in most of the tasks for dental hygiene students to learn, autonomy in clinical practice, and expectancy to change, than did clinical dental hygienists. Cardiopulmonary resuscitation (CPR), job ethics, and communication were the most frequently mentioned terms in the training as medical professionals program contents. Conclusions: In the future, it will be necessary to study the curriculum to improve the proficiency of dental hygienists as medical professionals.