• 제목/요약/키워드: recommendation systems

검색결과 839건 처리시간 0.023초

취업 큐레이션 시스템을 위한 개인 맞춤형 교육 콘텐츠 추천 기법 (Personalized University Educational Contents Recommendation Scheme for Job Curation Systems)

  • 임종태;오영호;최재용;편도웅;이소민;신보경;채대성;복경수;유재수
    • 한국콘텐츠학회논문지
    • /
    • 제21권7호
    • /
    • pp.134-143
    • /
    • 2021
  • 최근 모바일 기기 및 소셜 미디어 서비스의 발전으로 인해, 콘텐츠 추천 기법에 대한 연구들이 진행되고 있다. 그러한 콘텐츠 추천 기법들은 일반적으로 취업 큐레이션 시스템에 적용된다. 대부분의 기존 대학 교육 콘텐츠 추천 기법은 해당 학생의 학교, 전공 등을 바탕으로 가장 많이 수강한 과목만을 추천하기 때문에 각 학생이 원하는 취업의 형태나 분야 등이 고려되지 않는다. 본 논문에서는 취업 큐레이션 시스템 기반의 개인 맞춤형 교육 콘텐츠 추천 기법을 제안한다. 제안하는 기법은 사용자가 취업 큐레이션 시스템에서 활동한 내용을 바탕으로 사용자가 원하는 취업 형태와 취업 분야를 분석하여 관심 기업을 도출한다. 제안하는 기법은 도출된 관심 기업을 바탕으로 관심 기업에 취업한 졸업생들의 신뢰도와 유사도를 측정하여 참고할만한 졸업생을 선정하고 협업 필터링을 통해 사용자에게 맞춤형 교과목, 비교과목, 자율 활동 목록을 추천한다.

데이터 마이닝 기법을 이용한 상황 추론 추천시스템 (A Recommendation System based on Context Reasoning by Data Mining Techniques)

  • 이재식;이진천
    • 한국경영정보학회:학술대회논문집
    • /
    • 한국경영정보학회 2007년도 추계학술대회
    • /
    • pp.591-596
    • /
    • 2007
  • 본 연구에서는 상황 추론의 기능을 추천 시스템에 접목하였다. 연구의 대상 영역은 음악 추천 분야인데, 본 연구에서 제안하는 시스템은 세 개의 모듈, 즉 Intention Module, Mood Module 그리고 Recommendation Module로 구성되어 있다. Intention Module은 사용자가 음악을 청취할 의향이 있는지 없는지를 외부 환경의 상황 데이터를 이용하여 추론한다. Mood Module은 사용자의 상황에 적합한 음악의 장르를 추론한다. 마지막으로 Recommendation Module은 사용자에게 선정된 장르의 음악을 추천한다.

  • PDF

Tensor-based tag emotion aware recommendation with probabilistic ranking

  • Lim, Hyewon;Kim, Hyoung-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권12호
    • /
    • pp.5826-5841
    • /
    • 2019
  • In our previous research, we proposed a tag emotion-based item recommendation scheme. The ternary associations among users, items, and tags are described as a three-order tensor in order to capture the emotions in tags. The candidates for recommendation are created based on the latent semantics derived by a high-order singular value decomposition technique (HOSVD). However, the tensor is very sparse because the number of tagged items is smaller than the amount of all items. The previous research do not consider the previous behaviors of users and items. To mitigate the problems, in this paper, the item-based collaborative filtering scheme is used to build an extended data. We also apply the probabilistic ranking algorithm considering the user and item profiles to improve the recommendation performance. The proposed method is evaluated based on Movielens dataset, and the results show that our approach improves the performance compared to other methods.

Design and Implementation of Collaborative Filtering Application System using Apache Mahout -Focusing on Movie Recommendation System-

  • Lee, Jun-Ho;Joo, Kyung-Soo
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권7호
    • /
    • pp.125-131
    • /
    • 2017
  • It is not easy for the user to find the information that is appropriate for the user among the suddenly increasing information in recent years. One of the ways to help individuals make decisions in such a lot of information is the recommendation system. Although there are many recommendation methods for such recommendation systems, a representative method is collaborative filtering. In this paper, we design and implement the movie recommendation system on user-based collaborative filtering of apache mahout. In addition, Pearson correlation coefficient is used as a method of measuring the similarity between users. We evaluate Precision and Recall using the MovieLens 100k dataset for performance evaluation.

A Personalized Recommender based on Collaborative Filtering and Association Rule Mining

  • Kim Jae Kyeong;Suh Ji Hae;Cho Yoon Ho;Ahn Do Hyun
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2002년도 춘계공동학술대회
    • /
    • pp.312-319
    • /
    • 2002
  • A recommendation system tracks past action of a group of users to make a recommendation to individual members of the group. The computer-mediated marking and commerce have grown rapidly nowadays so the concerns about various recommendation procedure are increasing. We introduce a recommendation methodology by which Korean department store suggests products and services to their customers. The suggested methodology is based on decision tree, product taxonomy, and association rule mining. Decision tree is to select target customers, who have high purchase possibility of recommended products. Product taxonomy and association rule mining are used to select proper products. The validity of our recommendation methodology is discussed with the analysis of a real Korean department store.

  • PDF

Collaborative Recommendations Using Adjusted Product Hierarchy : Methodology and Evaluation

  • Kim Jae Kyeong;Park Su Kyung;Cho Yoon Ho;Choi Il Young
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2002년도 춘계공동학술대회
    • /
    • pp.320-325
    • /
    • 2002
  • Today many companies offer millions of products to customers. They are faced with a problem to choose particular products . In response to this problem a new marking strategy, recommendation has emerged. Among recommendation technologies collaborative filtering is most preferred. But the performance degrades with the number of customers and products. Namely, collaborative filtering has two major limitations, sparsity and scalability. To overcome these problems we introduced a new recommendation methodology using adjusted product hierarchy, grain. This methodology focuses on dimensionality reduction to improve recommendation quality and uses a marketer's specific knowledge or experience. In addition, it uses a new measure in the neighborhood formation step which is the most important one in recommendation process.

  • PDF

Movie Recommendation Algorithm Using Social Network Analysis to Alleviate Cold-Start Problem

  • Xinchang, Khamphaphone;Vilakone, Phonexay;Park, Doo-Soon
    • Journal of Information Processing Systems
    • /
    • 제15권3호
    • /
    • pp.616-631
    • /
    • 2019
  • With the rapid increase of information on the World Wide Web, finding useful information on the internet has become a major problem. The recommendation system helps users make decisions in complex data areas where the amount of data available is large. There are many methods that have been proposed in the recommender system. Collaborative filtering is a popular method widely used in the recommendation system. However, collaborative filtering methods still have some problems, namely cold-start problem. In this paper, we propose a movie recommendation system by using social network analysis and collaborative filtering to solve this problem associated with collaborative filtering methods. We applied personal propensity of users such as age, gender, and occupation to make relationship matrix between users, and the relationship matrix is applied to cluster user by using community detection based on edge betweenness centrality. Then the recommended system will suggest movies which were previously interested by users in the group to new users. We show shown that the proposed method is a very efficient method using mean absolute error.

Personalized Movie Recommendation System Combining Data Mining with the k-Clique Method

  • Vilakone, Phonexay;Xinchang, Khamphaphone;Park, Doo-Soon
    • Journal of Information Processing Systems
    • /
    • 제15권5호
    • /
    • pp.1141-1155
    • /
    • 2019
  • Today, most approaches used in the recommendation system provide correct data prediction similar to the data that users need. The method that researchers are paying attention and apply as a model in the recommendation system is the communities' detection in the big social network. The outputted result of this approach is effective in improving the exactness. Therefore, in this paper, the personalized movie recommendation system that combines data mining for the k-clique method is proposed as the best exactness data to the users. The proposed approach was compared with the existing approaches like k-clique, collaborative filtering, and collaborative filtering using k-nearest neighbor. The outputted result guarantees that the proposed method gives significant exactness data compared to the existing approach. In the experiment, the MovieLens data were used as practice and test data.

Personalized Recommendation Algorithm of Interior Design Style Based on Local Social Network

  • Guohui Fan;Chen Guo
    • Journal of Information Processing Systems
    • /
    • 제19권5호
    • /
    • pp.576-589
    • /
    • 2023
  • To upgrade home style recommendations and user satisfaction, this paper proposes a personalized and optimized recommendation algorithm for interior design style based on local social network, which includes data acquisition by three-dimensional (3D) model, home-style feature definition, and style association mining. Through the analysis of user behaviors, the user interest model is established accordingly. Combined with the location-based social network of association rule mining algorithm, the association analysis of the 3D model dataset of interior design style is carried out, so as to get relevant home-style recommendations. The experimental results show that the proposed algorithm can complete effective analysis of 3D interior home style with the recommendation accuracy of 82% and the recommendation time of 1.1 minutes, which indicates excellent application effect.

Knowledge Recommendation Based on Dual Channel Hypergraph Convolution

  • Yue Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권11호
    • /
    • pp.2903-2923
    • /
    • 2023
  • Knowledge recommendation is a type of recommendation system that recommends knowledge content to users in order to satisfy their needs. Although using graph neural networks to extract data features is an effective method for solving the recommendation problem, there is information loss when modeling real-world problems because an edge in a graph structure can only be associated with two nodes. Because one super-edge in the hypergraph structure can be connected with several nodes and the effectiveness of knowledge graph for knowledge expression, a dual-channel hypergraph convolutional neural network model (DCHC) based on hypergraph structure and knowledge graph is proposed. The model divides user data and knowledge data into user subhypergraph and knowledge subhypergraph, respectively, and extracts user data features by dual-channel hypergraph convolution and knowledge data features by combining with knowledge graph technology, and finally generates recommendation results based on the obtained user embedding and knowledge embedding. The performance of DCHC model is higher than the comparative model under AUC and F1 evaluation indicators, comparative experiments with the baseline also demonstrate the validity of DCHC model.