• Title/Summary/Keyword: recommendation algorithm

Search Result 417, Processing Time 0.027 seconds

Adult detection system development using CNN algorithm (CNN 알고리즘을 이용한 성인 검출 시스템 개발)

  • Lee, Hyun-Chang;Shin, Seong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.653-654
    • /
    • 2022
  • Recently, technology development using artificial intelligence (AI) is being conducted in various fields. It is being used in many areas, from a personalized recommendation system for general personal taste to the development of application technology that meets a specific purpose. In this study, for adult detection, we propose a method for detecting adults in elementary schools where many elementary school students live. Clothing color, pattern, style, or physical size are used as factors to differentiate between adults and children, and through this, it will be possible to quickly detect adults or unauthorized adults who break into elementary schools and use them in the pre-recognition system.

  • PDF

Determination of Optimal Welding Parameter for an Automatic Welding in the Shipbuilding

  • Park, J.Y.;Hwang, S.H.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.17-22
    • /
    • 2001
  • Because the quantitative relationships between welding parameters and welding result are not yet blown, optimal values of welding parameters for $CO_2$ robotic arc welding is a difficult task. Using the various artificial data processing methods may solve this difficulty. This research aims to develop an expert system for $CO_2$ robotic arc welding to recommend the optimal values of welding parameters. This system has three main functions. First is the recommendation of reasonable values of welding parameters. For such work, the relationships in between the welding parameters are investigated by the use of regression analysis and fuzzy system. The second is the estimation of bead shape by a neural network system. In this study the welding current voltage, speed, weaving width, and root gap are considered as the main parameters influencing a bead shape. The neural network system uses the 3-layer back-propagation model and a generalized delta rule as teaming algorithm. The last is the optimization of the parameters for the correction of undesirable weld bead. The causalities of undesirable weld bead are represented in the form of rules. The inference engine derives conclusions from these rules. The conclusions give the corrected values of the welding parameters. This expert system was developed as a PC-based system of which can be used for the automatic or semi-automatic $CO_2$ fillet welding with 1.2, 1.4, and 1.6mm diameter the solid wires or flux-cored wires.

  • PDF

Development of an Evidence-Based Protocol for Preventing Delirium in Intensive Care Unit Patients (중환자실 섬망예방을 위한 근거중심 간호중재 프로토콜 개발)

  • Moon, Kyoung Ja;Lee, Sun Mi
    • Journal of Korean Clinical Nursing Research
    • /
    • v.16 no.3
    • /
    • pp.175-186
    • /
    • 2010
  • Purpose: Delirium can be a highly prevalent symptom in intensive care units but it may still be under-recognized despite its relation with inclined morbidity, mortality, cost, and readmission. Therefore, this study aimed to develop a protocol that covers risk factors and non-pharmacological interventions to prevent delirium in ICU patients. Methods: This study was conducted using methodological design, and it followed the Scottish Intercollegiate Guideline Network (SIGN) guideline development steps: 1) the scope of protocol was decided (population, intervention, comparison, and outcomes); 2) guidelines, systematic reviews, and protocols were reviewed and checked using methodology checklist; 3) the level of evidence and recommendation grades was assigned; 4) the appropriateness of recommendations was scored by experts; 5) the final protocol & algorithm was modified and complemented. Results: The evidence-based delirium prevention protocol was completed that includes predisposing factors, precipitating factors and recommendations with evidenced grades. Conclusion: This protocol can be used as a guide nurses in screening patients with high risk factors of delirium as well as in intervening the patients non-pharmacologically to prevent delirium.

A Collaborative Filtering System Combined with Users' Review Mining : Application to the Recommendation of Smartphone Apps (사용자 리뷰 마이닝을 결합한 협업 필터링 시스템: 스마트폰 앱 추천에의 응용)

  • Jeon, ByeoungKug;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.1-18
    • /
    • 2015
  • Collaborative filtering(CF) algorithm has been popularly used for recommender systems in both academic and practical applications. A general CF system compares users based on how similar they are, and creates recommendation results with the items favored by other people with similar tastes. Thus, it is very important for CF to measure the similarities between users because the recommendation quality depends on it. In most cases, users' explicit numeric ratings of items(i.e. quantitative information) have only been used to calculate the similarities between users in CF. However, several studies indicated that qualitative information such as user's reviews on the items may contribute to measure these similarities more accurately. Considering that a lot of people are likely to share their honest opinion on the items they purchased recently due to the advent of the Web 2.0, user's reviews can be regarded as the informative source for identifying user's preference with accuracy. Under this background, this study proposes a new hybrid recommender system that combines with users' review mining. Our proposed system is based on conventional memory-based CF, but it is designed to use both user's numeric ratings and his/her text reviews on the items when calculating similarities between users. In specific, our system creates not only user-item rating matrix, but also user-item review term matrix. Then, it calculates rating similarity and review similarity from each matrix, and calculates the final user-to-user similarity based on these two similarities(i.e. rating and review similarities). As the methods for calculating review similarity between users, we proposed two alternatives - one is to use the frequency of the commonly used terms, and the other one is to use the sum of the importance weights of the commonly used terms in users' review. In the case of the importance weights of terms, we proposed the use of average TF-IDF(Term Frequency - Inverse Document Frequency) weights. To validate the applicability of the proposed system, we applied it to the implementation of a recommender system for smartphone applications (hereafter, app). At present, over a million apps are offered in each app stores operated by Google and Apple. Due to this information overload, users have difficulty in selecting proper apps that they really want. Furthermore, app store operators like Google and Apple have cumulated huge amount of users' reviews on apps until now. Thus, we chose smartphone app stores as the application domain of our system. In order to collect the experimental data set, we built and operated a Web-based data collection system for about two weeks. As a result, we could obtain 1,246 valid responses(ratings and reviews) from 78 users. The experimental system was implemented using Microsoft Visual Basic for Applications(VBA) and SAS Text Miner. And, to avoid distortion due to human intervention, we did not adopt any refining works by human during the user's review mining process. To examine the effectiveness of the proposed system, we compared its performance to the performance of conventional CF system. The performances of recommender systems were evaluated by using average MAE(mean absolute error). The experimental results showed that our proposed system(MAE = 0.7867 ~ 0.7881) slightly outperformed a conventional CF system(MAE = 0.7939). Also, they showed that the calculation of review similarity between users based on the TF-IDF weights(MAE = 0.7867) leaded to better recommendation accuracy than the calculation based on the frequency of the commonly used terms in reviews(MAE = 0.7881). The results from paired samples t-test presented that our proposed system with review similarity calculation using the frequency of the commonly used terms outperformed conventional CF system with 10% statistical significance level. Our study sheds a light on the application of users' review information for facilitating electronic commerce by recommending proper items to users.

Export Prediction Using Separated Learning Method and Recommendation of Potential Export Countries (분리학습 모델을 이용한 수출액 예측 및 수출 유망국가 추천)

  • Jang, Yeongjin;Won, Jongkwan;Lee, Chaerok
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.69-88
    • /
    • 2022
  • One of the characteristics of South Korea's economic structure is that it is highly dependent on exports. Thus, many businesses are closely related to the global economy and diplomatic situation. In addition, small and medium-sized enterprises(SMEs) specialized in exporting are struggling due to the spread of COVID-19. Therefore, this study aimed to develop a model to forecast exports for next year to support SMEs' export strategy and decision making. Also, this study proposed a strategy to recommend promising export countries of each item based on the forecasting model. We analyzed important variables used in previous studies such as country-specific, item-specific, and macro-economic variables and collected those variables to train our prediction model. Next, through the exploratory data analysis(EDA) it was found that exports, which is a target variable, have a highly skewed distribution. To deal with this issue and improve predictive performance, we suggest a separated learning method. In a separated learning method, the whole dataset is divided into homogeneous subgroups and a prediction algorithm is applied to each group. Thus, characteristics of each group can be more precisely trained using different input variables and algorithms. In this study, we divided the dataset into five subgroups based on the exports to decrease skewness of the target variable. After the separation, we found that each group has different characteristics in countries and goods. For example, In Group 1, most of the exporting countries are developing countries and the majority of exporting goods are low value products such as glass and prints. On the other hand, major exporting countries of South Korea such as China, USA, and Vietnam are included in Group 4 and Group 5 and most exporting goods in these groups are high value products. Then we used LightGBM(LGBM) and Exponential Moving Average(EMA) for prediction. Considering the characteristics of each group, models were built using LGBM for Group 1 to 4 and EMA for Group 5. To evaluate the performance of the model, we compare different model structures and algorithms. As a result, it was found that the separated learning model had best performance compared to other models. After the model was built, we also provided variable importance of each group using SHAP-value to add explainability of our model. Based on the prediction model, we proposed a second-stage recommendation strategy for potential export countries. In the first phase, BCG matrix was used to find Star and Question Mark markets that are expected to grow rapidly. In the second phase, we calculated scores for each country and recommendations were made according to ranking. Using this recommendation framework, potential export countries were selected and information about those countries for each item was presented. There are several implications of this study. First of all, most of the preceding studies have conducted research on the specific situation or country. However, this study use various variables and develops a machine learning model for a wide range of countries and items. Second, as to our knowledge, it is the first attempt to adopt a separated learning method for exports prediction. By separating the dataset into 5 homogeneous subgroups, we could enhance the predictive performance of the model. Also, more detailed explanation of models by group is provided using SHAP values. Lastly, this study has several practical implications. There are some platforms which serve trade information including KOTRA, but most of them are based on past data. Therefore, it is not easy for companies to predict future trends. By utilizing the model and recommendation strategy in this research, trade related services in each platform can be improved so that companies including SMEs can fully utilize the service when making strategies and decisions for exports.

Incorporating Social Relationship discovered from User's Behavior into Collaborative Filtering (사용자 행동 기반의 사회적 관계를 결합한 사용자 협업적 여과 방법)

  • Thay, Setha;Ha, Inay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.1-20
    • /
    • 2013
  • Nowadays, social network is a huge communication platform for providing people to connect with one another and to bring users together to share common interests, experiences, and their daily activities. Users spend hours per day in maintaining personal information and interacting with other people via posting, commenting, messaging, games, social events, and applications. Due to the growth of user's distributed information in social network, there is a great potential to utilize the social data to enhance the quality of recommender system. There are some researches focusing on social network analysis that investigate how social network can be used in recommendation domain. Among these researches, we are interested in taking advantages of the interaction between a user and others in social network that can be determined and known as social relationship. Furthermore, mostly user's decisions before purchasing some products depend on suggestion of people who have either the same preferences or closer relationship. For this reason, we believe that user's relationship in social network can provide an effective way to increase the quality in prediction user's interests of recommender system. Therefore, social relationship between users encountered from social network is a common factor to improve the way of predicting user's preferences in the conventional approach. Recommender system is dramatically increasing in popularity and currently being used by many e-commerce sites such as Amazon.com, Last.fm, eBay.com, etc. Collaborative filtering (CF) method is one of the essential and powerful techniques in recommender system for suggesting the appropriate items to user by learning user's preferences. CF method focuses on user data and generates automatic prediction about user's interests by gathering information from users who share similar background and preferences. Specifically, the intension of CF method is to find users who have similar preferences and to suggest target user items that were mostly preferred by those nearest neighbor users. There are two basic units that need to be considered by CF method, the user and the item. Each user needs to provide his rating value on items i.e. movies, products, books, etc to indicate their interests on those items. In addition, CF uses the user-rating matrix to find a group of users who have similar rating with target user. Then, it predicts unknown rating value for items that target user has not rated. Currently, CF has been successfully implemented in both information filtering and e-commerce applications. However, it remains some important challenges such as cold start, data sparsity, and scalability reflected on quality and accuracy of prediction. In order to overcome these challenges, many researchers have proposed various kinds of CF method such as hybrid CF, trust-based CF, social network-based CF, etc. In the purpose of improving the recommendation performance and prediction accuracy of standard CF, in this paper we propose a method which integrates traditional CF technique with social relationship between users discovered from user's behavior in social network i.e. Facebook. We identify user's relationship from behavior of user such as posts and comments interacted with friends in Facebook. We believe that social relationship implicitly inferred from user's behavior can be likely applied to compensate the limitation of conventional approach. Therefore, we extract posts and comments of each user by using Facebook Graph API and calculate feature score among each term to obtain feature vector for computing similarity of user. Then, we combine the result with similarity value computed using traditional CF technique. Finally, our system provides a list of recommended items according to neighbor users who have the biggest total similarity value to the target user. In order to verify and evaluate our proposed method we have performed an experiment on data collected from our Movies Rating System. Prediction accuracy evaluation is conducted to demonstrate how much our algorithm gives the correctness of recommendation to user in terms of MAE. Then, the evaluation of performance is made to show the effectiveness of our method in terms of precision, recall, and F1-measure. Evaluation on coverage is also included in our experiment to see the ability of generating recommendation. The experimental results show that our proposed method outperform and more accurate in suggesting items to users with better performance. The effectiveness of user's behavior in social network particularly shows the significant improvement by up to 6% on recommendation accuracy. Moreover, experiment of recommendation performance shows that incorporating social relationship observed from user's behavior into CF is beneficial and useful to generate recommendation with 7% improvement of performance compared with benchmark methods. Finally, we confirm that interaction between users in social network is able to enhance the accuracy and give better recommendation in conventional approach.

QualityRank : Measuring Authority of Answer in Q&A Community using Social Network Analysis (QualityRank : 소셜 네트워크 분석을 통한 Q&A 커뮤니티에서 답변의 신뢰 수준 측정)

  • Kim, Deok-Ju;Park, Gun-Woo;Lee, Sang-Hoon
    • Journal of KIISE:Databases
    • /
    • v.37 no.6
    • /
    • pp.343-350
    • /
    • 2010
  • We can get answers we want to know via questioning in Knowledge Search Service (KSS) based on Q&A Community. However, it is getting more difficult to find credible documents in enormous documents, since many anonymous users regardless of credibility are participate in answering on the question. In previous works in KSS, researchers evaluated the quality of documents based on textual information, e.g. recommendation count, click count and non-textual information, e.g. answer length, attached data, conjunction count. Then, the evaluation results are used for enhancing search performance. However, the non-textual information has a problem that it is difficult to get enough information by users in the early stage of Q&A. The textual information also has a limitation for evaluating quality because of judgement by partial factors such as answer length, conjunction counts. In this paper, we propose the QualityRank algorithm to improve the problem by textual and non-textual information. This algorithm ranks the relevant and credible answers by considering textual/non-textual information and user centrality based on Social Network Analysis(SNA). Based on experimental validation we can confirm that the results by our algorithm is improved than those of textual/non-textual in terms of ranking performance.

Korean Medication Algorithm for Bipolar Disorder 2018 : The Elderly (한국형 양극성 장애 약물치료 알고리듬 2018 : 노인)

  • Jung, Young-Eun;Kim, Moon-Doo;Bahk, Won-Myong;Yoon, Bo-Hyun;Jon, Duk-In;Seo, Jeong Seok;Kim, Won;Lee, Jung Goo;Woo, Young Sup;Jeong, Jong-Hyun;Sohn, InKi;Shim, Se-Hoon;Song, Hoo-Rim;Min, Kyung Joon
    • Mood & Emotion
    • /
    • v.16 no.3
    • /
    • pp.123-128
    • /
    • 2018
  • Objectives : The fourth revision of Korean Medication Algorithm Project for Bipolar Disorder (KMAP-BP) was performed to provide more proper guidelines for clinicians. In this study, we evaluated treatment strategies of elderly patients with bipolar disorders of KMAP-BP 2018. Methods : Sixty-one psychiatrists of the review committee with vast clinical experiences in treating bipolar disorders, completed the survey. An expert consensus was obtained, on pharmacological treatment strategies for elderly patients with bipolar disorder. The executive committee analyzed results, and discussed the results to produce the final algorithm. Results : In elderly patients with bipolar disorder, first-line treatment option for acute manic episode is monotherapy, with atypical antipsychotics or mood stabilizer, and a combination of mood stabilizer and atypical antipsychotics. First-line treatment option for acute depressive episode, was a combination of mood stabilizer and atypical antipsychotics, monotherapy with atypical antipsychotic or mood stabilizer, and atypical antipsychotics with lamotrigine. Conclusion : In KMAP-BP 2018, the recommendation for treatment option in elderly patients with bipolar disorder, was newly introduced. We expect this algorithm may provide valuable information, and facilitate treatment of elderly patients with bipolar disorder.

An Efficient Reasoning Method for OWL Properties using Relational Databases (관계형 데이터베이스를 이용한 효율적인 OWL 속성 추론 기법)

  • Lin, Jiexi;Lee, Ji-Hyun;Chung, Chin-Wan
    • Journal of KIISE:Databases
    • /
    • v.37 no.2
    • /
    • pp.92-103
    • /
    • 2010
  • The Web Ontology Language (OWL) has become the W3C recommendation for publishing and sharing ontologies on the Semantic Web. To derive hidden information from OWL data, a number of OWL reasoners have been proposed. Since OWL reasoners are memory-based, they cannot handle large-sized OWL data. To overcome the scalability problem, RDBMS-based systems have been proposed. These systems store OWL data into a database and perform reasoning by incorporating the use of a database. However, they do not consider complete reasoning on all types of properties defined in OWL and the database schemas they use are ineffective for reasoning. In addition, they do not manage updates to the OWL data which can occur frequently in real applications. In this paper, we compare various database schemas used by RDBMS-based systems and propose an improved schema for efficient reasoning. Also, to support reasoning for all the types of properties defined in OWL, we propose a complete and efficient reasoning algorithm. Furthermore, we suggest efficient approaches to managing the updates that may occur on OWL data. Experimental results show that our schema has improved performance in OWL data storage and reasoning, and that our approaches to managing updates to OWL data are more efficient than the existing approaches.

A Deep Learning Based Recommender System Using Visual Information (시각 정보를 활용한 딥러닝 기반 추천 시스템)

  • Moon, Hyunsil;Lim, Jinhyuk;Kim, Doyeon;Cho, Yoonho
    • Knowledge Management Research
    • /
    • v.21 no.3
    • /
    • pp.27-44
    • /
    • 2020
  • In order to solve the user's information overload problem, recommender systems infer users' preferences and suggest items that match them. The collaborative filtering (CF), the most successful recommendation algorithm, has been improving performance until recently and applied to various business domains. Visual information, such as book covers, could influence consumers' purchase decision making. However, CF-based recommender systems have rarely considered for visual information. In this study, we propose VizNCS, a CF-based deep learning model that uses visual information as additional information. VizNCS consists of two phases. In the first phase, we build convolutional neural networks (CNN) to extract visual features from image data. In the second phase, we supply the visual features to the NCF model that is known to easy to extend to other information among the deep learning-based recommendation systems. As the results of the performance comparison experiments, VizNCS showed higher performance than the vanilla NCF. We also conducted an additional experiment to see if the visual information affects differently depending on the product category. The result enables us to identify which categories were affected and which were not. We expect VizNCS to improve the recommender system performance and expand the recommender system's data source to visual information.