• Title/Summary/Keyword: recombinant vaccine

Search Result 194, Processing Time 0.021 seconds

Construction of tat-and nef-defective HIV-1 and screening of natural extracts with anti-HIV-1 activity

  • Lee, Ann-Hwee;Song, Man-Ki;Suh, Young-Ah;Sung, Young-Chul
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.77-77
    • /
    • 1995
  • Human immunodeficiency virus type 1 (HIV-1) contains several nonstructural genes which are required for the viral replication and disease pathogenesis. Among them, tat and nef genes encode an essential transactivator of HIV-1 LTR and a pluripotent protein which seems to be essential for the in vivo but not in vitro viral replication, respectively. We constructed two tat and n of defective HIV-1 and tested for their ability to replicate in several T cells. The defective viruses did not replicate in CD4$\^$+/ T cells, but rescued in the recombinant Jurkat-tat cell which also contains tat gene. The replication of tat and nef defective HIV-1 which expresses chloramphenicol acetyltransferase(CAT) gene was easily detected by a sensitive CAT assay. No revertant was identified during the passages of the mutant viruses for more than two months in Jurkat-tat cells. tat and n of defective HIV-1 could be used instead of wild type viruse for several purposes such as inhibitor screening and development of attenuated AIDS vaccine.

  • PDF

Construction of a live attenuated Salmonella strain expressing FanC protein to prevent bovine enterotoxigenic Escherichia coli and evaluation of its immunogenicity in mice

  • Won, Gayeon;Kim, Hee Jung;Lee, John Hwa
    • Korean Journal of Veterinary Research
    • /
    • v.57 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • To construct a novel vaccine candidate against bovine enterotoxigenic Escherichia coli (ETEC), FanC, the major subunit of K99 fimbriae adhesion, was inserted into secretion plasmid pYA3560 containing a ${\beta}-lactamase$ secretion system. This was then transformed into ${\Delta}asd$ ${\Delta}crp$ Salmonella (S.) Typhimurium and designated as JOL950. Secretion of recombinant fanC fimbrial antigens was confirmed by immunoblot analysis. Groups of mice were inoculated with single or double doses of JOL950. Another group was used as a negative control. Compared to control mice, all immunized mice had significantly higher levels (p < 0.05) of serum immunoglobulin (Ig)G, and secretory IgA against FanC. The IgG2a and IgG1 titer assays revealed that immunization highly induced IgG2a compared to that of IgG1, indicating that T helper-1- related cell-mediated immune responses may be elicited by JOL950. The results show that both systemic and mucosal immunities against selected fimbrial antigens of bovine ETEC expressed by a live attenuated S. Typhimurium strain are prominently produced in mice immunized with JOL950 via an oral route.

ELISA Validation for anti-PA Antibody Titer Measurements (항-보호항원 항체의 역가 측정을 위한 효소면역측정법 밸리데이션)

  • Kim, Yu-Gene
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.478-485
    • /
    • 2010
  • The vaccine is biological pretreatment that improves immunity to a particular disease. We can get immunity from producing antibody with injection antigen which has ability to defense against the disease. The ELISA is the most widely used method to measure antibody titer. We have developed and performed validation of ELISA according to the guideline of KFDA and ICH. In this paper, we have verified ELISA method is an excellent method to measure the titer of anti-PA antibody. We have constructed recombinant protective antigen among anthrax toxins and used as antigen of ELISA. In this validation, we have evaluated precision (repeatability, interlaboratory precision), specificity, linearity(range) and LOD, which are validation articles suggested by guideline. Inter-person precision was replaced with inter-laboratory precision. From the results, we have confirmed high precision in all experiments with CV under 20%.

Membrane-bound p35 Subunit of IL-12 on Tumor Cells is Functionally Equivalent to Membrane-bound Heterodimeric Single Chain IL-12 for Induction of Anti-tumor Immunity

  • Hyun-Jin Kim;Sang Min Park;Hayyoung Lee;Young Sang Kim
    • IMMUNE NETWORK
    • /
    • v.16 no.5
    • /
    • pp.305-310
    • /
    • 2016
  • In this study, we compared two different tumor cell vaccines for their induction of anti-tumor immunity; one was a tumor cell clone expressing a membrane-bound form of IL-12 p35 subunit (mbIL-12 p35 tumor clone), and the other was a tumor clone expressing heterodimeric IL-12 as a single chain (mb-scIL-12 tumor clone). The stimulatory effect of mb-scIL-12 on the proliferation of ConA-activated splenocytes was higher than that of mbIL-12 p35 in vitro. However, the stimulatory effect of mbIL-12 p35 was equivalent to that of recombinant soluble IL-12 (3 ng/ml). Interestingly, both tumor clones (mbIL-12 p35 and mb-scIL-12) showed similar tumorigenicity and induction of systemic anti-tumor immunity in vivo, suggesting that tumor cell expression of the membrane-bound p35 subunit is sufficient to induce anti-tumor immunity in our tumor vaccine model.

In ovo vaccination using Eimeria profilin and Clostridium perfringens NetB proteins in Montanide IMS adjuvant increases protective immunity against experimentally-induced necrotic enteritis

  • Lillehoj, Hyun Soon;Jang, Seung Ik;Panebra, Alfredo;Lillehoj, Erik Peter;Dupuis, Laurent;Arous, Juliette Ben;Lee, Seung Kyoo;Oh, Sung Taek
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.10
    • /
    • pp.1478-1485
    • /
    • 2017
  • Objective: The effects of vaccinating 18-day-old chicken embryos with the combination of recombinant Eimeria profilin plus Clostridium perfringens (C. perfringens) NetB proteins mixed in the Montanide IMS adjuvant on the chicken immune response to necrotic enteritis (NE) were investigated using an Eimeria maxima (E. maxima)/C. perfringens co-infection NE disease model that we previously developed. Methods: Eighteen-day-old broiler embryos were injected with $100{\mu}L$ of phosphate-buffered saline, profilin, profilin plus necrotic enteritis B-like (NetB), profilin plus NetB/Montanide adjuvant (IMS 106), and profilin plus Net-B/Montanide adjuvant (IMS 101). After post-hatch birds were challenged with our NE experimental disease model, body weights, intestinal lesions, serum antibody levels to NetB, and proinflammatory cytokine and chemokine mRNA levels in intestinal intraepithelial lymphocytes were measured. Results: Chickens in ovo vaccinated with recombinant profilin plus NetB proteins/IMS106 and recombinant profilin plus NetB proteins/IMS101 showed significantly increased body weight gains and reduced gut damages compared with the profilin-only group, respectively. Greater antibody response to NetB toxin were observed in the profilin plus NetB/IMS 106, and profilin plus NetB/IMS 101 groups compared with the other three vaccine/adjuvant groups. Finally, diminished levels of transcripts encoding for proinflammatory cytokines such as lipopolysaccharide-induced tumor necrosis $factor-{\alpha}$ factor, tumor necrosis factor superfamily 15, and interleukin-8 were observed in the intestinal lymphocytes of chickens in ovo injected with profilin plus NetB toxin in combination with IMS 106, and profilin plus NetB toxin in combination with IMS 101 compared with profilin protein alone bird. Conclusion: These results suggest that the Montanide IMS adjuvants potentiate host immunity to experimentally-induced avian NE when administered in ovo in conjunction with the profilin and NetB proteins, and may reduce disease pathology by attenuating the expression of proinflammatory cytokines and chemokines implicated in disease pathogenesis.

Effect of Recombinant Lactobacillus Expressing Canine GM-CSF on Immune Function in Dogs

  • Chung, Jin-Young;Sung, Eui-Jae;Cho, Chun-Gyu;Seo, Kyoung-Won;Lee, Jong-Soo;Bhang, Dong-Ha;Lee, Hee-Woo;Hwang, Cheol-Yong;Lee, Wan-Kyu;Youn, Hwa-Young;Kim, Chul-Joong
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1401-1407
    • /
    • 2009
  • Many Lactobacillus strains have been promoted as good probiotics for the prevention and treatment of diseases. We engineered recombinant Lactobacillus casei, producing biologically active canine granulocyte macrophage colony stimulating factor (cGM-CSF), and investigated its possibility as a good probiotic agent for dogs. Expression of the cGM-CSF protein in the recombinant Lactobacillus was confirmed by SDS-PAGE and Western blotting methods. For the in vivo study, 18 Beagle puppies of 7 weeks of age were divided into three groups; the control group was fed only on a regular diet and the two treatment groups were fed on a diet supplemented with either $1\times10^9$ colony forming units (CFU)/day of L. casei or L. casei expressing cGM-CSF protein for 7 weeks. Body weight was measured, and fecal and blood samples were collected from the dogs during the experiment for the measurement of hematology, fecal immunoglobulin (Ig)A and IgG, circulating IgA and IgG, and canine corona virus (CCV)-specific IgG. There were no differences in body weights among the groups, but monocyte counts in hematology and serum IgA were higher in the group receiving L. casei expressing cGM-CSF than in the other two groups. After the administration of CCV vaccine, CCV-specific IgG in serum increased more in the group supplemented with L. casei expressing cGM-CSF than the other two groups. This study shows that a dietary L. casei expressing cGM-CSF enhances specific immune functions at both the mucosal and systemic levels in puppies.

Molecular Cloning and Expression of a Gene for Outer Membrane Protein H in Pasteurella multocida (A:3) : Production of Antisera against the OmpH (파스튜렐라 (A:3)외막 단백질 H의 유전자 클론닝$\cdot$발현 및 면역혈청 생산)

  • Kim Younghwan;Hwang Heon;Lee Sukchan;Park Eun-Seok;Yoo Sun-Dong;Lee Jeongmin;Yang Joo-Sung;Kwon MooSik
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.4
    • /
    • pp.274-280
    • /
    • 2005
  • Pasteurella multocida is known to cause widespread infections in husbandry. To induce homologous and heterologous immunity against the infections, outer membrane proteins (OMPs) in the envelope of P. multocida are thought to be attractive vaccine candidates. Outer membrane protein H is considered as the major component of OMPs. In this study, a gene for OmpH was isolated from pathogenic P. multocida serogroup A. The gene was composed of 1,047 nucleotides coding 348 amino acids with signal peptide of 20 amino acids. The amino acid composition showed about 80 to 98 per cent sequence homologies among other 10 strains of P. multocida serogroup A, reported so far. A recombinant ompH, from which signal peptide was truncated, was generated using pRSET A to name 'pRSET A/OmpH-F2'. The pRSET A/OmpH-F2 was well expressed in E. coli BL21(DE3). The truncated OmpH was purified using nickel-nitrilotriacetic acid (Ni-NTA) affinity column chromatography. Its molecular weight was registered to be 40 kDa on SDS-PAGE gel. In order to generate immunesera against the OmpH, 50 ug of the protein was intraperitoneally injected into mice three times. The anti-OmpH immuneserum recognized about $5{\times}10^{-2}$ng quantity of the purified OmpH. It can be used for an effective vaccine production to prevent fowl cholera caused by pathogenic P. multocida (Serogroup A).

MethA Fibrosarcoma Cells Expressing Membrane-Bound Forms of IL-2 Enhance Antitumor Immunity

  • Sonn, Chung-Hee;Yoon, Hee-Ryung;Seong, In-Ock;Chang, Mi-Ra;Kim, Yong-Chan;Kang, Han-Chul;Suh, Seok-Cheol;Kim, Young-Sang
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1919-1927
    • /
    • 2006
  • Tumor cells genetically engineered to secrete cytokines are effective in tumor therapy, but various unexpected side effects are observed, which may result from the bulk activation of various bystander cells. In this study, we tested tumor vaccines expressing various membrane-bound forms of IL-2 (mbIL-2) on MethA fibrosarcoma cells to focus antitumor immune responses to CTL. Chimeric forms of IL-2 with whole CD4, deletion forms of CD4, and TNF were expressed on the tumor cell surface, respectively. Tumor clones expressing mbIL-2 or secretory form of IL-2 were able to support the cell growth of CTLL-2, an IL-2-dependent T cell line, and the proliferation of spleen cells from 2C TCR transgenic mice that are responsive to the $p2Ca/L^d$ MHC class I complex. Expression of mbIL-2 on tumor cells reduced the tumorigenicity of tumor cells, and the mice that once rejected the live IL-2/TNF tumor clone acquired systemic immunity against wild-type MethA cells. The IL-2/TNF clone was inferior to other clones in tumor formation, and superior in the stimulation of the CD8+ T cell population in vitro. These results suggest that the IL-2/TNF clone is the best tumor vaccine, and may stimulate CD8+ T cells by direct priming. Expression of IL-2/TNF on tumor cells may serve as an effective gene therapy method to ameliorate the side effects encountered in the recombinant cytokine therapy and the conventional cytokine gene therapy using the secretory form of IL-2.

Efficient Delivery of Toxoid Antigens using Micro/Nano-carriers (마이크로/나노-운반체를 이용한 톡소이드 항원의 효과적인 전달 방법)

  • Park, Ga-Young;Ahn, Gna;Lee, Se Hee;Kim, Sang Bum;Kim, Yang-Hoon;Ahn, Ji-Young
    • Journal of Life Science
    • /
    • v.28 no.4
    • /
    • pp.496-507
    • /
    • 2018
  • Immunization has been performed for centuries and is generally accepted as a sustainable method of controlling bacteria, viruses, and mediated and infectious diseases. Despite many studies having been performed on animal subjects to demonstrate the importance of toxin immunity, the use of toxoid vaccines in humans and animals has been limited for a long time. Recently, the development of the toxoid antigen delivery system has been facilitated using novel nano-medicinal technology. The micro/nano-carrier has been used to improve vaccination coverage as well as reduce vaccine costs. A micro/nano-carrier is a micro/nano-sized material that delivers immune cargo, including recombinant or peptide toxoid antigens. These toxoid antigens are either encapsulated in the interior or displayed on the surface of micro/nano-carriers as a way to protect them from the cellular machinery. In particular, the combination of toxoid antigens and micro/nano-carriers can induce phagocytosis through the specific interactions between GCs and macrophages; thus, the toxoid antigens can be delivered easily into the macrophages. This paper reviews recent achievements of micro/nano-carriers in the field of vaccine delivery systems such as microbial ghost cells (GCs, Bacterial ghost cells and Yeast ghost cells), gene-manipulated outer membrane vesicles (OMVs) and biocompatible, polymer-based nanoparticles (NPs, NP-Carrier and NP-Cage). Finally, this review shows various aspects in terms of the hosts' immune responses.

Immunological Characterization of Full and Truncated Recombinant Clones of ompH(D:4) Obtained from Pasteurella multocida (D:4) in Korea

  • Kim, Young-Hwan;Cheong, Ki-Young;Shin, Woo-Seok;Hong, Sung-Youl;Woo, Hee-Jong;Kwon, Moo-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1529-1536
    • /
    • 2006
  • We cloned a gene of ompH(D:4) from pigs infected with P. multocida D:4 in Korea [16]. The gene is composed of 1,026 nucleotides coding 342 amino acids (aa) with a signal peptide of 20 aa (GenBank accession number AY603962). In this study, we analyzed the ability of the ompH(D:4) to induce protective immunity against a wild-type challenge in mice. To determine appropriate epitope(s) of the gene, one full and three different types of truncated genes of the ompH(D:4) were constructed by PCR using pET32a or pRSET B as vectors. They were named ompH(D:4)-F (1,026 bp [1-1026] encoding 342 aa), ompH(D:4)-t1 (693 bp [55-747] encoding 231 aa), ompH(D:4)-t2 (561 bp [187-747] encoding 187 aa), and ompH(D:4)-t3 (540 bp [487-1026] encoding 180 aa), respectively. The genes were successfully expressed in Escherichia coli BL21(DE3). Their gene products, polypeptides, OmpH(D:4)-F, -t1, -t2, and -t3, were purified individually using nickel-nitrilotriacetic acid (Ni-NTA) affinity column chromatography. Their $M_rs$ were determined to be 54.6, 29, 24, and 23.2 kDa, respectively, using SDS-PAGE. Antisera against the four kinds of polypeptides were generated in mice for protective immunity analyses. Some $50{\mu}g$ of the four kinds of polypeptides were individually provided intraperitoneally with mice (n=20) as immunogens. The titer of post-immunized antiserum revealed that it grew remarkably compared with pre-antiserum. The lethal dose of the wild-type pathogen was determined at $10{\mu}l$ of live P. multocida D:4 through direct intraperitoneal (IP) injection, into post-immune mice (n=5, three times). Some thirty days later, the lethal dose ($10{\mu}l$) of live pathogen was challenged into the immunized mouse groups [OmpH(D:4)-F, -t1, -t2, and -t3; n=20 each, two times] as well as positive and negative control groups. As compared within samples, the OmpH(D:4)-F-immunized groups showed lower immune ability than the OmpH(D:4)-t1, -t2, and -t3. The results show that the truncated-OmpH(D:4)-t1, -t2, and -t3 can be used for an effective vaccine candidate against swine atrophic rhinitis caused by pathogenic P. multocida (D:4) isolated in Korea.