• Title/Summary/Keyword: recombinant subtilisin

Search Result 5, Processing Time 0.016 seconds

Identification of Recombinant Subtilisins

  • CHOI , NACK-SHICK;YOO, KI-HYUN;YOON, KAB-SEOG;CHANG, KYU-TAE;MAENG, PIL-JAE;KIM, SEUNG-HO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.35-39
    • /
    • 2005
  • To identify the activity of recombinant subtilisins (subtilisin BPN' and subtilisin Carlsberg), three different zymography methods, SDS-fibrin zymography (SDS-FZ), reverse fibrin zymography (RFZ), and isoelectric focusingfibrin zymography (IEF-FZ), were used. The recombinant subtilisins BPN' and Carlsberg did not migrate into the electrophoretic field based on a Laemmli buffer system, instead forming a "binding mode" at the top part of the separating gels with the SDS-FZ and RFZ techniques. Yet, this problem was resolved when using IEF-FZ with a pH range from 3 to 10. In addition, all these methods enabled the activity of a recombinant pro-subtilisin DJ-4 to be detected without a refolding pathway.

Miniscale Identification and Characterization of Subtilisins from Bacillus sp. Strains

  • CHOI NACK-SHICK;JU SUNG-KYU;LEE TAE YOUNG;YOON KAB-SEOG;CHANG KYU-TAE;MAENG PIL JAE;KIM SEUNG-HO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.537-543
    • /
    • 2005
  • Subtilisin (EC 3.4.21.14) is the major extracellular alkaline serine protease of Bacillus species. Previously, we found that subtilisins did not migrate in the electrophoretic field in the Laemmili buffer system due to their high pI values (over 8.8); however, it formed a 'binding mode' at the top of the separating gel [5]. Utilizing this characteristic, four subtilisins from Bacillus sp. strains (e.g., B. subtilis 168, B. subtilis KCTC 1021, B. amyloliquefaciens KCTC 3002, and Bacillus sp. DJ-1 and DJ-4) were easily and quickly identified by an over-running electrophoretic technique with a miniscale culture supernatant (less than 20 ml) without any column chromatographic steps. Two subtilisins (DJ-l and a recombinant version) from Bacillus sp. DJ-l were characterized, and the enzymatic properties were determined by SDS-fibrin zymography and densitometric analysis. Based on this observation, the recombinant pro-subtilisin DJ-l showed the same 'binding mode,' similar to native subtilisin DJ-l. On the other hand, mature subtilisin DJ -1 without pro-peptide showed no enzymatic activity.

Expression of Exogenous Human Hepatic Nuclear Factor-$1{\alpha}$ by a Lentiviral Vector and Its Interactions with Plasmodium falciparum Subtilisin-Like Protease 2

  • Liao, Shunyao;Liu, Yunqiang;Zheng, Bing;Cho, Pyo-Yun;Song, Hyun-Ok;Lee, Yun-Seok;Jung, Suk-Yul;Park, Hyun
    • Parasites, Hosts and Diseases
    • /
    • v.49 no.4
    • /
    • pp.431-436
    • /
    • 2011
  • The onset, severity, and ultimate outcome of malaria infection are influenced by parasite-expressed virulence factors as well as by individual host responses to these determinants. In both humans and mice, liver injury follows parasite entry, persisting to the erythrocytic stage in the case of infection with the fatal strain of Plasmodium falciparum. Hepatic nuclear factor (HNF)-$1{\alpha}$ is a master regulator of not only the liver damage and adaptive responses but also diverse metabolic functions. In this study, we analyzed the expression of host HNF-$1{\alpha}$ in relation to malaria infection and evaluated its interaction with the 5'-untranslated region of subtilisin-like protease 2 (subtilase, Sub2). Recombinant human HNF-$1{\alpha}$ expressed by a lentiviral vector (LV HNF-$1{\alpha}$) was introduced into mice. Interestingly, differences in the activity of the 5'-untranslated region of the Pf-Sub2 promoter were detected in 293T cells, and LV HNF-$1{\alpha}$ was observed to influence promoter activity, suggesting that host HNF-$1{\alpha}$ interacts with the Sub2 gene.

Cloning and Expression of a Alkaline Protease from Bacillus clausii I-52 (Bacillus clausii I-52로부터 alkaline protease 유전자의 클로닝 및 발현)

  • Joo, Han-Seung;Choi, Jang Won
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.201-212
    • /
    • 2011
  • The alkaline protease gene was cloned from a halo-tolerant alkalophilic Bacillus clausii I-52 isolated from the heavily polluted tidal mud flat of West Sea in Inchon Korea, which produced a strong extracellular alkaline protease (BCAP). Based on the full genome sequence of Bacillus subtilis, PCR primers were designed to allow for the amplification and cloning of the intact pro-BCAP gene including promoter region. The full-length gene consists of 1,143 bp and encodes 381 amino acids, which includes 29 residues of a putative signal peptide and an additional 77-amino-acid propeptide at its N-terminus. The mature BCAP deduced from the nucleotide sequence consists of 275 amino acids with a N-terminal amino acid of Ala, and a relative molecular weight and pI value was 27698.7 Da and 6.3, respectively. The amino acid sequence shares the highest similarity (99%) to the nattokinase precursor from B. subtilis and subtilisin E precursor from B. subtilis BSn5. The substrate specificity indicated that the recombinant BCAP could hydrolyze efficiently the synthetic substrate, N-Suc-Ala-Ala-Pro-Phe-pNA,and did not hydrolyze the substrates with basic amino acids at the P1 site. The recombinant BCAP was strongly inhibited by typical serine protease inhibitor, PMSF, indicating that BCAP is a member of the serine proteases.

Secretory Expression, Functional Characterization, and Molecular Genetic Analysis of Novel Halo-Solvent-Tolerant Protease from Bacillus gibsonii

  • Deng, Aihua;Zhang, Guoqiang;Shi, Nana;Wu, Jie;Lu, Fuping;Wen, Tingyi
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.197-208
    • /
    • 2014
  • A novel protease gene from Bacillus gibsonii, aprBG, was cloned, expressed in B. subtilis, and characterized. High-level expression of aprBG was achieved in the recombinant strain when a junction was present between the promoter and the target gene. The purified recombinant enzyme exhibited similar N-terminal sequences and catalytic properties to the native enzyme, including high affinity and hydrolytic efficiency toward various substrates and a superior performance when exposed to various metal ions, surfactants, oxidants, and commercial detergents. AprBG was remarkably stable in 50% organic solvents and retained 100% activity and stability in 0-4 M NaCl, which is better than the characteristics of previously reported proteases. AprBG was most closely related to the high-alkaline proteases of the subtilisin family with a 57-68% identity. The secretion and maturation mechanism of AprBG was dependent on the enzyme activity, as analyzed by site-directed mutagenesis. Thus, when taken together, the results revealed that the halo-solvent-tolerant protease AprBG displays significant activity and stability under various extreme conditions, indicating its potential for use in many biotechnology applications.