• 제목/요약/키워드: recombinant protein vaccine

검색결과 126건 처리시간 0.03초

Recommendation for use of diphtheria and tetanus toxoids and acellular pertussis, inactivated poliovirus, Haemophilus influenzae type b conjugate, and hepatitis B vaccine in infants

  • Cho, Hye-Kyung;Park, Su Eun;Kim, Yae-Jean;Jo, Dae Sun;Kim, Yun-Kyung;Eun, Byung-Wook;Lee, Taek-Jin;Lee, Jina;Lee, Hyunju;Kim, Ki Hwan;Cho, Eun Young;Ahn, Jong Gyun;Choi, Eun Hwa;The Committee on Infectious Diseases of the Korean Pediatric Society,
    • Clinical and Experimental Pediatrics
    • /
    • 제64권12호
    • /
    • pp.602-607
    • /
    • 2021
  • In April 2020, the Ministry of Food and Drug Safety licensed a hexavalent combined diphtheria and tetanus toxoids and acellular pertussis (DTaP), inactivated poliovirus (IPV), Haemophilus influenzae type b (Hib) conjugated to tetanus protein, and hepatitis B (HepB) (recombinant DNA) vaccine, DTaP-IPV-Hib-HepB (Hexaxim, Sanofi Pasteur), for use as a 3-dose primary series in infants aged 2, 4, and 6 months. The DTaP-IPV-Hib-HepB vaccine is highly immunogenic and safe and provides a long-term immune response based on studies performed in a variety of settings in many countries, including Korea. This report summarizes the Committee on Infectious Diseases of the Korean Pediatric Society guidelines for the use of this newly introduced hexavalent combination vaccine.

조류 콕시듐증의 백신개발에 대한 최근의 진보 (Recent Progress in Development of Vaccines against Avian Coccidiosis)

  • Lillehoj, Hyun S.
    • 한국가금학회지
    • /
    • 제26권3호
    • /
    • pp.149-170
    • /
    • 1999
  • Protozoa of the genus Eimeria are the etiologic agents of avian coccidiosis, the most economically important Parasitic disease for the poultry industry. Coccidia multiply in intestinal epithelial cells of a wide range of hosts, including livestock in addition to poultry. Chemotherapy is extensively used to control coccidiosis. However, development of drug resistance by Eimeria parasites, the intensive cost and labor involved in the identification of new anticoccidial compounds and public awareness of drug residues in foods warrant alternative methods to prevent coccidiocic in the fast growing poultry industry. For these reasons, there is a great interest in developing vaccines against avian coccidiosis. Live Eimeria vaccines confer protective immunity, however a significant disadvantage of using these types of vaccines is their pathogenicity. Live parasites with attenuated pathogenicity also usually produce immunity but may revert back to a pathogenic form and may be contaminated with other pathogenic organisms. Killed Eimeria vaccines are safer but, unlike live attenuated vaccines, are not able to generate cytotoxic T lymphocyte responses. Recombinant vaccines are biochemically purified proteins produced by genetic engineering that consist of particular epitopes or metabolites of Eimeria. Unlike live attenuated organisms, recombinant vaccines do not possess as much risk and generally are able to induce both humoral and cell mediated immunity. DNA vaccines consist of genes encoding immunogenic proteins of pathogens that are directly administered into the host in a manner that the gene is expressed and the resulting protein generates a protective immune response. Although all of these different types of vaccines have been applied to coccidiosis, this disease continues to cause substantial morbidity and mortality in the poultry industry. Future development of an effective vaccine against coccidiosis will depend on further investigation of protective immunity to Eimeria infection and identification of important immundgenic parasite molecules.

  • PDF

Enhancement of Antigen-specific Antibody and $CD8^+$ T Cell Responses by Codelivery of IL-12-encapsulated Microspheres in Protein and Peptide Vaccination

  • Park, Su-Hyung;Chang, Jun;Yang, Se-Hwan;Kim, Hye-Ju;Kwak, Hyun-Hee;Kim, Byong-Moon;Lee, Sung-Hee;Sung, Young-Chul
    • IMMUNE NETWORK
    • /
    • 제7권4호
    • /
    • pp.186-196
    • /
    • 2007
  • Background: Although IL-12 has been widely accepted to playa central role in the control of pathogen infection, the use of recombinant IL-12 (rIL-12) as a vaccine adjuvant has been known to be ineffective because of its rapid clearance in the body. Methods: To investigate the effect of sustained release of IL-12 in vivo in the peptide and protein vaccination models, rIL-12 was encapsulated into poly ($A_{DL}$-lactic-co-glycolic acid) (PLGA). Results: We found that codelivery of IL-12-encapsulated microspheres (IL-12EM) could dramatically increase not only antibody responses, but also antigen-specific $CD4^+\;and\;CD8^+$ T cell responses. Enhanced immune responses were shown to be correlated with protective immunity against influenza and respiratory syncytial virus (RSV) virus challenge. Interestingly, the enhancement of $CD8^+$ T cell response was not detectable when $CD4^+$ T cell knockout mice were subjected to vaccination, indicating that the enhancement of the $CD8^+$ T cell response by IL-12EM is dependent on $CD4^+$ T cell "help". Conclusion: Thus, IL-12EM could be applied as an adjuvant of protein and peptide vaccines to enhance protective immunity against virus infection.

Immune Responses to Plant-Derived Recombinant Colorectal Cancer Glycoprotein EpCAM-FcK Fusion Protein in Mice

  • Lim, Chae-Yeon;Kim, Deuk-Su;Kang, Yangjoo;Lee, Ye-Rin;Kim, Kibum;Kim, Do Sun;Kim, Moon-Soo;Ko, Kisung
    • Biomolecules & Therapeutics
    • /
    • 제30권6호
    • /
    • pp.546-552
    • /
    • 2022
  • Epidermal cell adhesion molecule (EpCAM) is a tumor-associated antigen (TAA), which has been considered as a cancer vaccine candidate. The EpCAM protein fused to the fragment crystallizable region of immunoglobulin G (IgG) tagged with KDEL endoplasmic reticulum (ER) retention signal (EpCAM-FcK) has been successfully expressed in transgenic tobacco (Nicotiana tabacum cv. Xanthi) and purified from the plant leaf. In this study, we investigated the ability of the plant-derived EpCAM-FcK (EpCAM-FcKP) to elicit an immune response in vivo. The animal group injected with the EpCAM-FcKP showed a higher differentiated germinal center (GC) B cell population (~9%) compared with the animal group injected with the recombinant rhEpCAM-Fc chimera (EpCAM-FcM). The animal group injected with EpCAM-FcKP (~42%) had more differentiated T follicular helper cells (Tfh) than the animal group injected with EpCAM-FcM (~7%). This study demonstrated that the plant-derived EpCAM-FcK fusion antigenic protein induced a humoral immune response in mice.

Expression of Recombinant Rotavirus Proteins Harboring Antigenic Epitopes of the Hepatitis A Virus Polyprotein in Insect Cells

  • Than, Van Thai;Baek, In-Hyuk;Lee, Hee-Young;Kim, Jong-Bum;Shon, Dong-Hwa;Chung, In-Sik;Kim, Won-Yong
    • Biomolecules & Therapeutics
    • /
    • 제20권3호
    • /
    • pp.320-325
    • /
    • 2012
  • Rotavirus and hepatitis A virus (HAV) spread by the fecal-oral route and infections are important in public health, especially in developing countries. Here, two antigenic epitopes of the HAV polyprotein, domain 2 (D2) and domain 3 (D3), were recombined with rotavirus VP7, generating D2/VP7 and D3/VP7, cloned in a baculovirus expression system, and expressed in Spodoptera frugiperda 9 (Sf9) insect cells. All were highly expressed, with peak expression 2 days post-infection. Western blotting and ELISA revealed that two chimeric proteins were antigenic, but only D2/VP7 was immunogenic and elicited neutralizing antibody responses against rotavirus and HAV by neutralization assay, implicating D2/VP7 as a multivalent subunit-vaccine Candidate for preventing both rotavirus and HAV infections.

Glyceraldehyde-3-Phosphate Dehydrogenase, an Immunogenic Streptococcus equi ssp. zooepidemicus Adhesion Protein and Protective Antigen

  • Fu, Qiang;Wei, Zigong;Liu, Xiaohong;Xiao, Pingping;Lu, Zhaohui;Chen, Yaosheng
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권4호
    • /
    • pp.579-585
    • /
    • 2013
  • Streptococcus equi ssp. zooepidemicus (Streptococcus zooepidemicus, SEZ) is an important pathogen associated with opportunistic infections of a wide range of species, including pigs and humans. The absence of a suitable vaccine makes it difficult to control SEZ infection. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been previously identified as an immunogenic protein using immunoproteomic techniques. In the present study, we confirmed that the sequence of GAPDH was highly conserved with other Streptococcus spp. The purified recombinant GAPDH could elicit a significant humoral antibody response in mice and confer significant protection against challenge with a lethal dose of SEZ. GAPDH could adhere to the Hep-2 cells, confirmed by flow cytometry, and inhibit adherence of SEZ to Hep-2 cells in an adherence inhibition assay. In addition, real-time PCR demonstrated that GAPDH was induced in vivo following infection of mice with SEZ. These suggest that GAPDH could play an important role in the pathogenesis of SEZ infection and could be a target for vaccination against SEZ.

Galectin-1 from redlip mullet Liza haematocheilia: identification, immune responses, and functional characterization as pattern recognition receptors (PRRs) in host immune defense system

  • Chaehyeon Lim;Hyukjae Kwon;Jehee Lee
    • Fisheries and Aquatic Sciences
    • /
    • 제25권11호
    • /
    • pp.559-571
    • /
    • 2022
  • Galectins, a family of ß-galactoside-binding lectins, have emerged as soluble mediators in infected cells and pattern recognition receptors (PRRs) responsible for evoking and regulating innate immunity. The present study aimed to evaluate the role of galectin-1 in the host immune response of redlip mullet (Liza haematocheilia). We established a cDNA database for redlip mullet, and the cDNA sequence of galectin-1 (LhGal-1) was characterized. In silico analysis was performed, and the spatial and temporal expression patterns in gills and blood in response to lipopolysaccharide polyinosinic:polycytidylic acid, and Lactococcus garvieae were estimated via quantitative real-time PCR. Functional assays were conducted using recombinant protein to investigate carbohydrate binding, bacterial binding, and bacterial agglutination activity. LhGal-1 was composed of 135 amino acids. Conserved motifs (H-NPR, -N- and -W-E-R) within the carbohydrate recognition domain were found in LhGal-1. The tissue distribution revealed that the healthy stomach expressed high levels of LhGal-1. The temporal monitoring of LhGal-1 mRNA expression in the gill and blood showed its significant upregulation in response to immune challenges with different stimulants. rLhGal-1 exhibited binding activity in response to carbohydrates and bacteria. Moreover, the agglutination of rLhGal-1 against Escherichia coli was observed. Collectively, our findings suggest that LhGal-1 may function as a PRR in redlip mullet. Furthermore, LhGal-1 can be considered a significant gene to play a protective role in redlip mullet immune system.

High Levels of Antibodies to Plasmodium falciparum Liver Stage Antigen-1 in Naturally Infected Individuals in Myanmar

  • Lee, Hyeong-Woo;Moon, Sung-Ung;Kim, Yeon-Joo;Cho, Shin-Hyeong;Lin, Khin;Na, Byoung-Kuk;Kim, Tong-Soo
    • Parasites, Hosts and Diseases
    • /
    • 제46권3호
    • /
    • pp.195-198
    • /
    • 2008
  • Plasmodium falciparum liver stage antigen-1 (PfLSA-1) is one of the few antigens expressed exclusively in liver stage parasites. In this study, we evaluated the antibody responses against recombinant PfLSA-1 in naturally infected individuals in Myanmar. High levels of antibody responses (70.7%) were detected in 82 serum samples from 116 infected individuals, and IgG responses to PfLSA-1 principally composed of responses of IgG1 and IgG3 subclasses. These results show that PfLSA-1 elicits effective antibody responses in individuals infected with P. falciparum, and thus it could be not only an attractive candidate protein for vaccine development, but also a useful antigen for serodiagnosis of the infection.

Mucosal Administration of Lactobacillus casei Surface-Displayed HA1 Induces Protective Immune Responses against Avian Influenza A Virus in Mice

  • Dung T. Huynh;W.A. Gayan Chathuranga;Kiramage Chathuranga;Jong-Soo Lee;Chul-Joong Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권3호
    • /
    • pp.735-745
    • /
    • 2024
  • Avian influenza is a serious threat to both public health and the poultry industry worldwide. This respiratory virus can be combated by eliciting robust immune responses at the site of infection through mucosal immunization. Recombinant probiotics, specifically lactic acid bacteria, are safe and effective carriers for mucosal vaccines. In this study, we engineered recombinant fusion protein by fusing the hemagglutinin 1 (HA1) subunit of the A/Aquatic bird/Korea/W81/2005 (H5N2) with the Bacillus subtilis poly γ-glutamic acid synthetase A (pgsA) at the surface of Lactobacillus casei (pgsA-HA1/L. casei). Using subcellular fractionation and flow cytometry we confirmed the surface localization of this fusion protein. Mucosal administration of pgsA-HA1/L. casei in mice resulted in significant levels of HA1-specific serum IgG, mucosal IgA and neutralizing antibodies against the H5N2 virus. Additionally, pgsA-HA1/L. casei-induced systemic and local cell-mediated immune responses specific to HA1, as evidenced by an increased number of IFN-γ and IL-4 secreting cells in the spleens and higher levels of IL-4 in the local lymphocyte supernatants. Finally, mice inoculated with pgsA-HA1/L. casei were protected against a 10LD50 dose of the homologous mouse-adapted H5N2 virus. These results suggest that mucosal immunization with L. casei displaying HA1 on its surface could be a potential strategy for developing a mucosal vaccine against other H5 subtype viruses.

Characterization of the Salmonella typhi Outer Membrane Protein C

  • Toobak, Hoda;Rasooli, Iraj;Gargari, Seyed Latif Mousavi;Jahangiri, Abolfazl;Nadoushan, Mohammadreza Jalali;Owlia, Parviz;Astaneh, Shakiba Darvish Alipour
    • 한국미생물·생명공학회지
    • /
    • 제41권1호
    • /
    • pp.128-134
    • /
    • 2013
  • Salmonella enterica serovar typhi, a Gram-negative food-borne pathogen, causes typhoid fever in humans. OmpC is an outer membrane porin of S. typhi expressed throughout the infection period. OmpC is potentially an attractive antigen for multivalent vaccines and diagnostic kit designs. In this study we combined in silico, in vitro and in vivo approaches to analyze various aspects of OmpC's antigenic properties. The conserved region, in addition to secondary and tertiary structures, and linear B cell epitopes, were predicted. A number of results obtained from in silico analyses were validated by experimental studies. OmpC was amplified, cloned and then expressed, with the recombinant protein then being purified. BALB/c mice were immunized by purified denatured OmpC. The titer of antibody was raised. Results of challenges with the pathogen revealed that the immunity is non-protective. Most of the theoretical and experimental results were in consensus. Introduced linear B cell epitopes can be employed for the design of diagnostic kits based on antigen-antibody interactions.