• Title/Summary/Keyword: recombinant PCR

Search Result 423, Processing Time 0.031 seconds

Transcriptional Analysis for Oral Vaccination of Recombinant Viral Proteins against White Spot Syndrome Virus (WSSV) in Litopenaeus vannamei

  • Choi, Mi-Ran;Kim, Yeong-Jin;Jang, Ji-Suk;Kim, Sung-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.170-175
    • /
    • 2011
  • This study was carried out for the molecular level identification of recombinant protein vaccine efficacy, by oral feeding against white spot syndrome virus infection, with the comparison of viral mRNA transcriptional levels in shrimp cells. For the determination of WSSV dilution ratio for the vaccination experiment by oral feeding, in vivo virus titration was carried out using different virus dilutions of virus stock ($1{\times}10^2$, $2{\times}10^2$, and $1{\times}10^3$). Among the dilution ratios, $2{\times}10^2$ diluted WSSV stock was chosen as the optimal condition because this dilution showed 90% mortality at 10 days after virus injection. Recombinant viral proteins, rVP19 and rVP28, produced as protein vaccines were delivered in shrimps by oral feeding. The cumulative mortalities of the shrimps vaccinated with rVP19 and rVP28 at 21 days after the challenge with WSSV were 66.7% and 41.7%, respectively. This indicates that rVP28 showed a better protective effect against WSSV in shrimp than rVP19. Through the comparison of mRNA transcriptional levels of viral genes from collected shrimp organ samples, it was confirmed that viral gene transcriptions of vaccinated shrimps were delayed for 4~10 days compared with those of unvaccinated shrimps. Protection from WSSV infection in shrimp by the vaccination with recombinant viral proteins could be accomplished by the prevention of entry of WSSV due to the shrimp immune system activated by recombinant protein vaccines.

Generation and Immunity Testing of a Recombinant Adenovirus Expressing NcSRS2-NcGRA7 Fusion Protein of Bovine Neospora caninum

  • Jia, Li-Jun;Zhang, Shou-Fa;Qian, Nian-Chao;Xuan, Xue-Nan;Yu, Long-Zheng;Zhang, Xue-Mei;Liu, Ming-Ming
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.2
    • /
    • pp.247-253
    • /
    • 2013
  • Neospora caninum is the etiologic agent of bovine neosporosis, which affects the reproductive performance of cattle worldwide. The transmembrane protein, NcSRS2, and dense-granule protein, NcGRA7, were identified as protective antigens based on their ability to induce significant protective immune responses in murine neosporosis models. In the current study, NcSRS2 and NcGRA7 genes were spliced by overlap-extension PCR in a recombinant adenovirus termed Ad5-NcSRS2-NcGRA 7, expressing the NcSRS2-NcGRA7 gene, and the efficacy was evaluated in mice. The results showed that the titer of the recombinant adenovirus was $10^9TCID_{50}/ml$. Three weeks post-boost immunization (w.p.b.i.), the IgG antibody titer in sera was as high as 1:4,096. IFN-${\gamma}$ and IL-4 levels were significantly different from the control group (P<0.01). This research established a solid foundation for the development of a recombinant adenovirus vaccine against bovine N. caninum.

Preparation of Microspheres Encapsulating a Recombinant TIMP-1 Adenovirus and their Inhibition of Proliferation of Hepatocellular Carcinoma Cells

  • Xia, Dong;Yao, Hui;Liu, Qing;Xu, Liang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6363-6368
    • /
    • 2012
  • Objective: The study aim was to prepare poly-DL-lactide-poly (PELA) microspheres encapsulating recombinant tissue inhibitors of metalloproteinase-1 (TIMP-1) in an adenovirus to investigate its inhibition on the proliferation of hepatocellular carcinoma cells HepG2. Methods: Microspheres were prepared by encapsulating the recombinant TIMP-1 adenovirus into biodegradable PELA. The particle size, viral load, encapsulation efficiency and in-vitro release were measured. Microspheres were used to infect HepG2 cells, then infection efficiency was examined under a fluorescent microscope and ultrastructural changes assessed by TEM. Expression of TIMP-1 mRNA in HepG2 cells was examined by semi-quantitative RT-PCR and proliferation by MTT and cell growth curve assays. Results: We successfully prepared microspheres encapsulating recombinant TIMP-1 adenovirus with a diameter of $1.965{\mu}m$, an encapsulation efficiency of 60.0%, a viral load of $10.5{\times}10^8/mg$ and approximate 60% of virus release within 120 h, the total releasing time of which was longer than 240 h. The microspheres were confirmed to be non-toxic with blank microspheres. Infected HepG2 cells could stably maintain in-vitro expression of TIMP-1, with significantly effects on biological behaviour Conclusion: PELA microspheres encapsulating a recombinant TIMP-1 adenovirus can markedly inhibit the proliferation of HepG2 cells, which provides an experimental basis for polymer/chemistry-based gene therapy of hepatocellular carcinomas.

Expression and Characterization of Human T-Cell Leukemia Virus Type-I Env and Gag Proteins

  • Son, Kyung-Hwa;Kim, Byong-Moon;Lee, Taik-You;Kim, Seong-Ryong;Kim, Kun-Soo;Lee, Jeong-Kug;Yang, Jai-Myung
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.311-317
    • /
    • 1999
  • Human T-cell leukemia virus Type-I (HTLV-I) is etiologically associated with rare adult T-cell leukemia, a malignant T-cell disorder. cDNAs encoding p24 (gag), gp21(env), and pXII of HTLV-I were amplified by polymerase chain reaction (PCR) using the genomic DNA extracted from HUT102 cell line as a template. The amplified cDNAs were cloned into the Escherichia coli expression vectors and over-expression of the recombinant proteins were achieved by adding IPTG into the culture media in order to induce the promoter. The molecular weights of the recombinant p24, gp21, and pXII, determined by SDS-PAGE, were found to be approximately 28 kDa, 23 kDa, and 15 kDa, respectively. Reactivity of the recombinant proteins with human sera was tested by the immunoblot assay. The gp21 and p24 reacted against the sera obtained from HTLV-I-infected individuals but not against the sera obtained from normal persons. These results suggest that the recombinant proteins expressed in E. coli were recognized by antibodies in sera from HTLV-I infected patients. These recombinant proteins would be applicable for detecting the presence of antibodies against HTLV-I in human blood samples.

  • PDF

Expression of Anti-breast Cancer Monoclonal Antibody in Transgenic Plant

  • Kim, Deuk-Su;Shao, Yingxue;Lee, Jeong-Hwan;Yoon, Joon-Sik;Park, Se-Ra;Choo, Young-Kug;Hwang, Kyung-A;Ko, Ki-Sung
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.390-394
    • /
    • 2011
  • BACKGROUND: Plant expression system for mass production of recombinant proteins has several advantages over other existing expression systems with economical and safety issues. Breast cancer is a cancer originating from breast tissue and comprises almost 25% of all cancers in women world widely. Lewis-Y antigen is difucosylated oligosaccharide and is carried by glycoconjugates at cancer cell surface. In this study, the anti-breast cancer mAb BR55, which recognizes the epitope Lewis-Y, was expressed in the plant expression system. METHODS AND RESULTS: We have developed plant system for production of mAb BR55 with or without KDEL (the ER retention signal). This ER retention signal was attached to C-terminus of protein to help retain the recombinant glycoprotein carrying oligomannose glycans and enhance glycoprotein accumulation. PCR analysis was performed and confirmed the presence of recombinant genes. Western blot validated that the recombinant proteins mAb BR55 with or without KDEL were expressed in transgenic plants, moreover, the expression level of the mAb BR55 with KDEL was higher compared to the mAb BR55 without KDEL. CONCLUSION: These results indicate that KDEL fusion is a good way to produce proteins and plant can be an ideal expression system to obtain proteins and enhance accumulation of proteins.

Prevalence of GII.4 Sydney 2012 and Recombinant GII.3P[12] Noroviruses Associated with Acute Gastroenteritis in Hospitalized Children in Thailand, 2015-2017

  • Manowong, Areerat;Chanta, Chulapong;Chan-it, Wisoot
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.1
    • /
    • pp.126-134
    • /
    • 2022
  • Norovirus (NoV) is an important pathogen causing acute gastroenteritis worldwide. The purpose of the present study was the molecular characterization of NoV. A total of 408 stool specimens collected from hospitalized children associated with acute gastroenteritis in Chiang Rai, Thailand, 2015-2017 were investigated for the presence of NoVs by RT-PCR. NoV GII was detected in 32 samples (7.8%). Five distinct genotypes were identified, including GII.4 (13/32, 40.6%), GII.3 (11/32, 34.3%), GII.17 (4/32, 12.5%), GII.2 (2/32, 6.3%), and GII.14 (2/32, 6.3%). NoV infection occurred mostly in young children under 3 years of age (31/32, 96.9%) and showed the main peak in summer months from March to April (18/32, 56.3%). Phylogenetic analysis revealed that all 13 GII.4 strains clustered with GII.4 Sydney 2012 variant. Representative GII.3 strains were analyzed as a recombinant GII.3P[12] strain. Several amino acid differences were found in the antigenic epitopes and antibody binding sites of the VP1 capsid of the GII.3P[12]. Homology modeling of the P domain of the GII.3P[12] strain demonstrated that 10/13 amino acid differences were predicted to be located on the surface-exposed area of the capsid structure. These amino acid changes might affect the infectivity and the antigenicity of the recombinant GII.3P[12]. The prevalence of GII.4 Sydney 2012 and recombinant GII.3P[12] strains indicates the genetic diversity of circulating NoVs in Thailand, emphazing the importance of continuous surveillance to mornitor newly emerging NoV strains in the future.

Construction of the Novel Baculovirus Transfer Vector Using the p10 Gene of BmNPV (BmNPV의 p10 유전자를 이용한 새로운 전이벡터 개발)

  • 강석우;진병래
    • Journal of Sericultural and Entomological Science
    • /
    • v.39 no.2
    • /
    • pp.180-185
    • /
    • 1997
  • To develope the novel baculovirus transfer vector, the p10 gene was cloned from the Bombyx mori nuclear polygedrosis virus (BmNPV) vB2 strain isolated from the B. mori larvae of sericultural farms. The novel transfer vector was constructed by using the p10 gene of BmNPV vB2 strain was 210 bp. The TAAG sequence at the -71 bp of upstream from translation initiator ATG and two polyadenylation signal site at the downstream from terminator TAA were also detected in the p10 gene. The 5' and 3' flanking region of the p10 gene amplified by PCR was cloned into pBluescriptII SK(+) and then transfer vector pBm10 was construceted. The 7.9 kb pBm10 was analysed by restriction enzymes and the map was confirmed. In order to determine the expression of foreign gene of pBm10, $\beta$-galactosidase gene was inserted in the SmaI site of foreign gene cloning site of pBm10. The pBm10 containing $\beta$-galactosidase gene was cotranfected wth genomic DNA of BmNPV vB2 into BmN-4 cells. The recombinant baculovirus expressing $\beta$-galactosidase was also produced polygedra in the infected cells. The results indicated that pBm10 is functional, suggesting that in the baculovirus expression vector system, the recombinant virus produced by pBm10 was effective by oral infection for the producing recombinant proteins in in vivo expression.

  • PDF

Molecular Characterization of a Nuclease Gene of Chlorella Virus SS-2

  • Park, Yun-Jung;Jung, Sang-Eun;Choi, Tae-Jin
    • The Plant Pathology Journal
    • /
    • v.25 no.1
    • /
    • pp.47-53
    • /
    • 2009
  • Sequence analysis of the Chlorella virus SS-2 revealed one putative nuclease gene that is 807 bp long and encodes a 31kDa protein. Multiple sequence alignment analysis reveals the presence of highly conserved PD-(D/E)XK residues in the encoded protein. The gene cloned into an expression vector was expressed as a His-tagged fusion protein in chaperone containing pKJE7 cells. The recombinant protein was purified using a His-Trap chelating HP column and used for functional analysis. Exonuclease activity of the SS-2 nuclease was detected when the DNA substrates, such as linear ssDNA, PCR amplicon, linear dsDNA with 5'-overhang ends, 3'-overhang ends, or blunt ends were used. Covalently closed circular DNA was also degraded by the SS-2 recombinant protein, suggesting that the SS-2 nuclease has an endonuclease activity. Stable activity of SS-2 nuclease was observed between $10^{\circ}C$ and $50^{\circ}C$. The optimum pH concentrations for the SS-2 nuclease were pH 6.0-8.5. Divalent ions inhibited the SS-2 nuclease activity.

In Vitro Expression of the Recombinant hFSH Gene using Retrovirus Vector System (In Vitro에서 Retrovirus Vector System을 이용한 재조합 hFSH 유전자의 발현)

  • Min, Gyeong-Heon;Kwon, Mo-Sun;Kim, Teoan;Koo, Bon-Chul
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.115-121
    • /
    • 2011
  • hFSH is a glycoprotein secreted from anterior pituitary and consists of ${\alpha}$ and ${\beta}$ subunits. Because of its major biological functions including sperm formation in the male and for follicular growth, FSH is used to cure woman's sterility. In this study we tried to produce recombinant hFSH in vitro using a retrovirus expression vector. Two major components of the vector we constructed are: ( i ) a DNA fragment containing ${\alpha}$ and ${\beta}$ genes fused by a DNA sequence coding carboxyl terminal peptide (CTP) of human chorionic gonadotropin, (ii) a DNA fragment corresponding woodchuck hepatitis virus posttranscriptional regulatory element (WPRE). Evaluation of expression profile of the recombinant FSH using reverse transcription PCR and enzyme-linked immunosorbent assay (ELISA). Among three cell lines tested, HeLa cells were the best for hFSH expression (5,395 mIU/ml), then followed by chicken embryonic fibroblast (CEF) cells and Chinese hamster ovary (CHO) cells in the order of hFSH production. In addition to the amount, the FSH produced from HeLa cells was highest in terms of biological activity which was determined by measuring cAMP.

Substitution of Serine for Non-disulphide-bond-forming Cysteine in Grass Carp (Ctenopharygodon Idellus) Growth Hormone Improves In Vitro Oxidative Renaturation

  • Leung, Michael Yiu-Kwong;Ho, Walter Kwok-Keung
    • BMB Reports
    • /
    • v.39 no.2
    • /
    • pp.150-157
    • /
    • 2006
  • Native grass carp (Ctenopharygodon idellus) growth hormone, has 5 cysteine amino acid residues, forms two disulphide bridges in its mature form. Recombinant grass carp growth hormone, when over-expressed in E. coli, forms inclusion bodies. In vitro oxidative renaturation of guanidine-hydrochloride dissolved recombinant grass carp growth hormone was achieved by sequential dilution and stepwise dialysis at pH 8.5. The redox potential of the refolding cocktail was maintained by glutathione disulphide/glutathione couple. The oxidative refolded protein is heterogeneous, and contains multimers, oligomers and monomers. The presence of non-disulphide-bond-forming cysteine in recombinant grass carp growth hormone enhances intermolecular disulphide bond formation and also non-native intramolecular disulphide bond formation during protein folding. The non-disulphide-bond-forming cysteine was converted to serine by PCR-mediated site-directed mutagenesis. The resulting 4-cysteine grass carp growth hormone has improved in vitro oxidative refolding properties when studied by gel filtration and reverse phase chromatography. The refolded 4-cysteine form has less hydrophobic aggregate and has only one monomeric isoform. Both refolded 4-cysteine and 5-cystiene forms are active in radioreceptor binding assay.