• Title/Summary/Keyword: recombinant PCR

Search Result 423, Processing Time 0.029 seconds

EFFECT OF NERVE GROWTH FACTOR GENE INJECTION ON THE NERVE REGENERATION IN RAT LINGUAL NERVE CRUSH-INJURY MODEL (백서 설신경 압박손상모델에서 신경성장인자 유전자 주입이 신경재생에 미치는 영향)

  • Gao, En-Feng;Chung, Hun-Jong;Ahn, Kang-Min;Kim, Soung-Min;Kim, Yun-Hee;Jahng, Jeong-Won;Lee, Jong-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.5
    • /
    • pp.375-395
    • /
    • 2006
  • Purpose: Lingual nerve (LN) damage may be caused by either tumor resection or injury such as wisdom tooth extraction, Although autologous nerve graft is sometimes used to repair the damaged nerve, it has the disadvantage of necessity of another operation for nerve harvesting. Moreover, the results of nerve grafting is not satisfactory. The nerve growth factor (NGF) is well-known to play a critical role in peripheral nerve regeneration and its local delivery to the injured nerve has been continuously tried to enhance nerve regeneration. However, its application has limitations like repeated administration due to short half life of 30 minutes and an in vivo delivery model must allow for direct and local delivery. The aim of this study was to construct a well-functioning $rhNGF-{\beta}$ adenovirus for the ultimate development of improved method to promote peripheral nerve regeneration with enhanced and extended secretion of hNGF from the injured nerve by injecting $rhNGF-{\beta}$ gene directly into crush-injured LN in rat model. Materials and Methods: $hNGF-{\beta}$ gene was prepared from fetal brain cDNA library and cloned into E1/E3 deleted adenoviral vector which contains green fluorescence protein (GFP) gene as a reporter. After large scale production and purification of $rhNGF-{\beta}$ adenovirus, transfection efficiency and its expression at various cells (primary cultured Schwann cells, HEK293 cells, Schwann cell lines, NIH3T3 and CRH cells) were evaluated by fluorescent microscopy, RT-PCR, ELISA, immunocytochemistry. Furthermore, the function of rhNGF-beta, which was secreted from various cells infected with $rhNGF-{\beta}$ adenovirus, was evaluated using neuritogenesis of PC-12 cells. For in vivo evaluation of efficacy of $rhNGF-{\beta}$ adenovirus, the LNs of 8-week old rats were exposed and crush-injured with a small hemostat for 10 seconds. After the injury, $rhNGF-{\beta}$ adenovirus($2{\mu}l,\;1.5{\times}10^{11}pfu$) or saline was administered into the crushed site in the experimental (n=24) and the control group (n=24), respectively. Sham operation of another group of rats (n=9) was performed without administration of either saline or adenovirus. The taste recovery and the change of fungiform papilla were studied at 1, 2, 3 and 4 weeks. Each of the 6 animals was tested with different solutions (0.1M NaCl, 0.1M sucrose, 0.01M QHCl, or 0.01M HCl) by two-bottle test paradigm and the number of papilla was counted using SEM picture of tongue dorsum. LN was explored at the same interval as taste study and evaluated electro-physiologically (peak voltage and nerve conduction velocity) and histomorphometrically (axon count, myelin thickness). Results: The recombinant adenovirus vector carrying $rhNGF-{\beta}$ was constructed and confirmed by restriction endonuclease analysis and DNA sequence analysis. GFP expression was observed in 90% of $rhNGF-{\beta}$ adenovirus infected cells compared with uninfected cells. Total mRNA isolated from $rhNGF-{\beta}$ adenovirus infected cells showed strong RT-PCR band, however uninfected or LacZ recombinant adenovirus infected cells did not. NGF quantification by ELISA showed a maximal release of $18865.4{\pm}310.9pg/ml$ NGF at the 4th day and stably continued till 14 days by $rhNGF-{\beta}$ adenovirus infected Schwann cells. PC-12 cells exposed to media with $rhNGF-{\beta}$ adenovirus infected Schwann cell revealed at the same level of neurite-extension as the commercial NGF did. $rhNGF-{\beta}$ adenovirus injected experimental groups in comparison to the control group exhibited different taste preference ratio. Salty, sweet and sour taste preference ratio were significantly different after 2 weeks from the beginning of the experiment, which were similar to the sham group, but not to the control group.

Relationship between porcine miR-20a and its putative target low-density lipoprotein receptor based on dual luciferase reporter gene assays

  • Ding, Yueyun;Zhu, Shujiao;Wu, Chaodong;Qian, Li;Li, DengTao;Wang, Li;Wan, Yuanlang;Zhang, Wei;Yang, Min;Ding, Jian;Wu, Xudong;Zhang, Xiaodong;Gao, Yafei;Yin, Zongjun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.922-929
    • /
    • 2019
  • Objective: Mutations in low-density lipoprotein receptor (LDLR), which encodes a critical protein for cholesterol homeostasis and lipid metabolism in mammals, are involved in cardiometabolic diseases, such as familial hypercholesterolemia in pigs. Whereas microRNAs (miRNAs) can control LDLR regulation, their involvement in circulating cholesterol and lipid levels with respect to cardiometabolic diseases in pigs is unclear. We aimed to identify and analyze LDLR as a potential target gene of SSC-miR-20a. Methods: Bioinformatic analysis predicted that porcine LDLR is a target of SSC-miR-20a. Wild-type and mutant LDLR 3'-untranslated region (UTR) fragments were generated by polymerase chain reaction (PCR) and cloned into the pGL3-Control vector to construct pGL3 Control LDLR wild-3'-UTR and pGL3 Control LDLR mutant-3'-UTR recombinant plasmids, respectively. An miR-20a expression plasmid was constructed by inserting the porcine premiR-20a-coding sequence between the HindIII and BamHI sites in pMR-mCherry, and constructs were confirmed by sequencing. HEK293T cells were co-transfected with the miR-20a expression or pMR-mCherry control plasmids and constructs harboring the corresponding 3'-UTR, and relative luciferase activity was determined. The relative expression levels of miR-20a and LDLR mRNA and their correlation in terms of expression levels in porcine liver tissue were analyzed using reverse-transcription quantitative PCR. Results: Gel electrophoresis and sequencing showed that target gene fragments were successfully cloned, and the three recombinant vectors were successfully constructed. Compared to pMR-mCherry, the miR-20a expression vector significantly inhibited wild-type LDLR3'-UTR-driven (p<0.01), but not mutant LDLR-3'-UTR-driven (p>0.05), luciferase reporter activity. Further, miR-20a and LDLR were expressed at relatively high levels in porcine liver tissues. Pearson correlation analysis revealed that porcine liver miR-20a and LDLR levels were significantly negatively correlated (r = -0.656, p<0.05). Conclusion: LDLR is a potential target of miR-20a, which might directly bind the LDLR 3'-UTR to post-transcriptionally inhibit expression. These results have implications in understanding the pathogenesis and progression of porcine cardiovascular diseases.

Expression, Purification and Antiserum Production of the Avian Influenza H9N2 Virus HA and NA Proteins (Avian Influenza H9N2 Virus의 HA와 NA 단백질 발현, 정제 및 항혈청 생산)

  • Lee, Hyun-Ji;Song, Byung-Hak;Kim, Jeong-Min;Yun, Sang-Im;Kim, Jin-Kyoung;Kang, Young-Sik;Koo, Yong-Bum;Jeon, Ik-Soo;Byun, Sung-June;Lee, Youn-Jeong;Kwon, Jun-Hun;Park, Jong-Hyeon;Joo, Yi-Seok;Lee, Young-Min
    • Korean Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.178-185
    • /
    • 2008
  • Avian influenza virus (AIV) is recognized as key to the emergence of pandemic influenza for humans; there are growing concerns that AIV H9N2 may become more efficient to transmit to humans in the near future, since the infection of poultry with AIV H9N2 has been common in recent years. In this study, we aimed to produce antisera recognizing the HA and NA proteins of AIV H9N2. Initially, coding sequences corresponding to the N-terminal regions of the HA and NA proteins of the Korean AIV H9N2 (A/Ck/Kr/MS96/96) isolated from a domestic chicken were amplified from the genomic RNA. Following cloning of the amplified cDNA fragments into pGEX4T-1 vector, two GST-fusion proteins (GST-HAln and GST-NAn) were expressed in E. coli BL21 and purified with glutathione sepharose columns; the recombinant GST-HAln and GST-NAn proteins were both used as immunogens in rabbits. The antigenicity of the rabbit antisera was analyzed by immunoblotting of the cell lysates prepared from AIV H9N2-infected MDCK cells. Overall, the recombinant HAln and NAn proteins fused to the C-terminus of GST and the rabbit antisera raised against the corresponding recombinant proteins would provide a valuable reagent for AIV diagnosis and basic research.

Development of Dual Reporter System of Mutant Dopamine 2 Receptor ($D_2R$) and Sodium Iodide Symporter (NIS) Transgenes (변이 도파민 2 수용체와 나트륨 옥소 공동 수송체 이입유전자의 이중 리포터시스템 개발)

  • Hwang, Do-Won;Lee, Dong-Soo;Kang, Joo-Hyun;Chang, Young-Soo;Kim, Yun-Hui;Jeong, Jae-Min;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.4
    • /
    • pp.294-299
    • /
    • 2004
  • Purpose: Both human NIS and mutant $D_2R$ transgenes are proposed as reporting system in transplanted cell tracking. Using hepatoma cell lines, we constructed a dual reporter system containing human sodium-iodide symporter (hNIS) and dopamine 2 receptor ($D_2R$) and compared its characteristics. Materials and Methods: The recombinant plasmid ($pIRES-hNIS/D_2R$) was constructed with IRES (internal ribosome entry site) under control of the CMV promoter $pIRES-hNIS/D_2R$ was transfected to human hepatoma SK-Hep1 cell line with lipofectamine. HEP-ND ($SK-Hep1-hNIS/D_2R$) cells stably expressing hNIS and $D_2R$ was established by selection with G418 for two weeks. RT-PCR was performed to investigate the expression of both hNIS and $D_2R$ genes. The expressions of hNIS and $D_2R$ were measured by $^{125}I$ uptake assays and receptor binding assays. Specific binding of $D_2R$ to $[^3H]spiperone$ was verified by Scatchard plot with (+) butaclamol as a specific inhibitor. $K_d\;and\;B_{max}$ values were estimated. The correlation between hNIS and $D_2R$ expression was compared by using each clone. Results: Similar quantities of hNIS and $D_2R$ genes were expressed on HEP-ND as RT-PCR assays. HEP-ND cells showed 30 to 40 fold higher radioiodine uptakes than those of parental SK-Hep1 cells. $^{125}I$ uptake in HEP-ND cells was completely inhibited by $KClO_4$, a NIS inhibitor Specific binding to HEP-ND cells was saturable and the $K_d\;and\;B_{max}$ values for HEP-ND cells were 2.92 nM, 745.25 fmol/mg protein and 2.91nM, 1323 fmole/mg protein in two clones, respectively. The radioiodine uptake by hNIS activity and $D_2R$ binding was highly correlated. Conclusion: We developed a dual positron and gamma imaging reporter system of hNIS and $D_2R$ in a stably transfected cell line. We expect that $D_2R$ and hNIS genes can complement mutually as a nuclear reporting system or that $D_2R$ can be used as reporter gene when hNIS gene were used as a treatment gene.

A Co-inhibitory Molecule, B7-H4, Synergistically Potentiates Oral Tolerance by Inducing CD4+CD25+FoxP3+ T Cells

  • Wen, Lanying;Yang, Sung-Yeun;Choi, Jae-Kyoung;Kim, Young-Hee;Kwon, Eun-Hee;Lee, Hyun-Ji;Jeoung, Hae-Young;Hwang, Du-Hyeon;Hwang, Dong-Jin;Choi, In-Hak
    • IMMUNE NETWORK
    • /
    • v.8 no.1
    • /
    • pp.21-28
    • /
    • 2008
  • Background: A co-inhibitory molecule, B7-H4, is believed to negatively regulate T cell immunity by suppressing T cell proliferation and inhibiting cytokine production. However, the mechanism behind B7-H4-mediated tolerance remains unclear. Methods: Balb/c $(H-2^d)$ mice were fed with dendritic cell line, DC2.4 $(H-2^d)$ every day for 10 days. Meantime, mice were hydrodynamically injected with recombinant plasmid expressing B7-H4 fusion protein (B7-H4.hFc) or hFc via tail vein. One day after last feeding, mice were immunized with allogeneic B6 spleen cells. 14 days following immunization, mice were challenged with B6 spleen cells to ear back and the ear swelling was determined the next day. Subsequently, a mixed lymphocyte reaction (MLR) was also performed and cytokines profiles from the reaction were examined by sandwich ELISA. Frequency of immunosuppressive cell population was assayed with flow cytometry and mRNA for FoxP3 was determined by RT-PCR. Results: Tolerant mice given plasmid expressing B7-H4.hFc showed a significant reduction in ear swelling compared to control mice. In addition, T cells from mice given B7-H4.hFc plasmid revealed a significant hyporesponsiveness of T cells against allogeneic spleen cells and showed a significant decrease in Th1 and Th2 cytokines such as IFN-${\gamma}$, IL-5, and TNF-${\alpha}$. Interestingly, flow cytometric analysis showed that the frequency of CD4+CD25+FoxP3+ Tregs in spleen was increased in tolerant mice given recombinant B7-H4.hFc plasmid compared to control group. Conclusion: Our results demonstrate that B7-H4 synergistically potentiates oral tolerance induced by allogeneic cells by increasing the frequency of FoxP3+ CD4+CD25+ Treg and reducing Th1 and Th2 cytokine production.

Development of Human Antibody Inhibiting RNase H Activity of Polymerase of Hepatitis B Virus Using Phage Display Technique (Phage Display 기법을 이용한 B형 간염 바이러스 Polymerase의 RNase H 활성을 억제하는 인간 단세포군 항체의 개발)

  • Lee, Seong-Rak;Song, Eun-Kyoung;Jeong, Young-Joo;Lee Young-Yi;Kim, Ik-Jung;Choi, In-Hak;Park, Sae-Gwang
    • IMMUNE NETWORK
    • /
    • v.4 no.1
    • /
    • pp.16-22
    • /
    • 2004
  • Background: To develop a novel treatment strategy for hepatitis B virus infection, a major cause of liver chirosis and cancer, we aimed to make human monoclonal antibodies inhibiting RNase H activity of P protein playing in important role in HBV replication. In this regard, phage display technology was employed and demonstrated as an efficient cloning method for human monoclonal antibody. So this study analysed the usability of human monoclonal antibody as protein based gene therapy. Methods: RNase H of HBV was expressed as fusion protein with maltose binding protein and purified with amylose resin column. Single chain Fv (scFv) phage antibody library was constructed by PCR cloning using total RNAs of PBMC from 50 healthy volunteers. Binders to RNase H were selected with BIAcore 2000 from the constructed library, and purified as soluble antibody fragment. The affinity and sequences of selected antibody fragments were analyzed with BIAcore and ABI automatic sequencer, respectively. And finally RNase H activity inhibiting assay was carried out. Results: Recombinant RNase H expressed in E. coli exhibited an proper enzyme activity. Naive library of $4.46{\times}10^9cfu$ was screened by BIAcore 2000. Two clones, RN41 and RN56, showed affinity of $4.5{\times}10^{-7}M$ and $1.9{\times}10^{-7}M$, respectively. But RNase H inhibiting activity of RN41 was higher than that of RN56. Conclusion: We cloned human monoclonal antibodies inhibiting RNase H activity of P protein of HBV. These antibodies can be expected to be a good candidate for protein-based antiviral therapy by preventing a replication of HBV if they can be expressed intracellularly in HBV-infected hepatocytes.

Cloning and Expression of FSHb Gene and the Effect of $FSH{\beta}$ on the mRNA Levels of FSHR in the Local Chicken

  • Zhao, L.H.;Chen, J.L.;Xu, H.;Liu, J.W.;Xu, Ri Fu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.3
    • /
    • pp.292-301
    • /
    • 2010
  • Follicle-stimulating hormone (FSH) is a pituitary glycoprotein hormone that is encoded by separate alpha- and betasubunit genes. It plays a key role in stimulating and regulating ovarian follicular development and egg production in chicken. FSH signal transduction is mediated by the FSH receptor (FSHR) that exclusively interacts with the beta-subunit of FSH, but characterization of prokaryotic expression of the FSHb gene and its effect on the expression of the FSHR gene in local chickens have received very little attention. In the current study, the cDNA fragment of the FSHb gene from Dagu chicken was amplified using reverse transcription polymerase chain reaction (RT-PCR), and inserted into the pET-28a (+) vector to construct the pET-28a-FSHb plasmid. After expression of the plasmid in E. coli BL21 (DE3) under inducing conditions, the recombination protein, $FSH{\beta}$ subunit, was purified and injected into the experimental hens and the effect on the mRNA expression levels of the FSHR gene was investigated. Sequence comparison showed that the coding region of the FSHb gene in the local chicken shared 99%-100% homology to published nucleotides in chickens; only one synonymous nucleotide substitution was detected in the region. The encoded amino acids were completely identical with the reported sequence, which confirmed that the sequences of the chicken FSHb gene and the peptides of the $FSH{\beta}$ subunit are highly conserved. This may be due to the critical role of the normal function of the FSHb gene in hormonal specificity and regulation of reproduction. The results of gene expression revealed that a recombinant protein with a molecular weight of about 19 kDa was efficiently expressed and it was identified by Western blotting analysis. After administration of the purified $FSH{\beta}$ protein, significantly higher expression levels were demonstrated in uterus, ovary and oviduct samples (p<0.05). These observations suggested that the expressed $FSH{\beta}$ protein possesses biological activity, and has a potential role in regulation of reproductive physiology in chickens.

Antitunor Effect of Carcinoma cells Ttransduced with Herpes simplex virus-thymidine kinase by Gancyclovir and Radiation (Herpes simplex virus-thymidine kinase 유전자가 전이된 종양 세포에서 Gancyclovir와 방사선 조사에 의한 항 종양 효과)

  • Lee, Jae Woo;Oh, Seong Taek;Ahn, Chan Hyuk;Lim, Kun Woo;Cho, Hyun-Il;Kim, Gum Ryong;Kim, Tai-Gyu
    • IMMUNE NETWORK
    • /
    • v.1 no.1
    • /
    • pp.45-52
    • /
    • 2001
  • Background: Many types of cancer become resistant to current chemotherapeutic and radiotherapeutic intervention. To overcome this situation application of gene therapy by the introduction of suicide genes followed by their prodrugs may be promising. A viral enzyme, Herpes simplex thymidine kinase (HSV-tk), which converts ganciclovir from an inactive prodrug to a cytotoxic agent by phosphorylation, are being actively investigated for use in gene therapy for cancer. The purpose of this study was to determine whether combining prodrug-activating gene therapy and irradiation might result in enhanced antitumor effects. Methods: The HSV-tk gene was cloned into the retroviral vector, pLXSN and established the clones producing retroviruses carrying the HSV-tk gene. The carcinoma cell line, HCT116 and Huh-7 were transduced with high-titer recombinant retroviruses. These cell lines were treated with ganciclovir before or after irradiation for the defining combinational effect of suicide gene therapy and radiotherapy. Results: The titers of cloned PA3 17 amphotropic retroviruses ranged from 4 to 6 X $10^6CFU/ml4$. After selectional periods, the expression of HSV-tk was confirmed by reverse-transcriptase polymerase chain reaction (RT-PCR). The growth of cells expressing HSV-tk was inhibited as increase of GCV dose after 48 hr and the growth inhibitory effect of GCV was much higher after 72 hr. When the cells transduced with HSV-tk gene were exposed to radiation, the growth inhibitory effect of GCV was significantly increased, as compared with non-transduced parental cells. Conclusions: The results suggest that the addition of HSV-tk gene therapy to standard radiation therapy may improve the effectiveness of treatment for solid tumors.

  • PDF

Gene Cloning and Expression of Trehalose Synthase from Thermus thermophilus HJ6 (Thermus thermophilus HJ6 유래 내열성 Trehalose Synthase의 유전자 클로닝 및 발현)

  • Kim, Hyun-Jung;Kim, Han-Woo;Jeon, Sung-Jong
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.3
    • /
    • pp.182-188
    • /
    • 2008
  • A hyperthermophilic bacteria (strain HJ6) was isolated from a hot springs located in the Arima-cho, Hyogo, Japan. The cells were long-rod type ($2-4{\mu}m$), about $0.4{\mu}m$ in diameter. The pH and temperature for optimal growth were 6.5 and $80^{\circ}C$, respectively. Phylogenetic analysis based on the 16S rDNA sequence and biochemical studies indicated that HJ6 belonged to the genus Thermus thermophilus (Tt). The gene encoding the Trehalose synthase (TS) was cloned and sequenced. The open reading frame (ORF) of the TtTS gene was composed of 2,898 nucleotides and encoded a protein (975 amino acids) with a predicted molecular weight of 110.56 kDa. The deduced amino acid sequence of TtTS showed 99% and 83% identities to the Thermus caldophilus TS and Meiothermus ruber TS, respectively. TtTS gene was expressed in Escherichia coli cells, and the recombinant protein was purified to homogeneity. The optimal temperature and pH for Trehalose synthase activity were found to be $80^{\circ}C$ and 7.5, respectively. The half-life of heat inactivation was about 40 min at $90^{\circ}C$. The maximum trehalose conversion rate of maltose into trehalose by the enzyme increased as the substrate concentration increased, and reached 55.7% at the maltose concentration of 500 mM, implying that the enzyme conversion was dependent of the substrate concentration.

Biphasic effects of TGFβ1 on BMP9-induced osteogenic differentiation of mesenchymal stem cells

  • Li, Rui-Dong;Deng, Zhong-Liang;Hu, Ning;Liang, Xi;Liu, Bo;Luo, Jin-Yong;Chen, Liang;Yin, Liangjun;Luo, Xiaoji;Shui, Wei;He, Tong-Chuan;Huang, Wei
    • BMB Reports
    • /
    • v.45 no.9
    • /
    • pp.509-514
    • /
    • 2012
  • We have found that the previously uncharacterized bone morphogenetic protein-9 (BMP9) is one of the most osteogenic factors. However, it is unclear if BMP9 cross-talks with $TGF{\beta}1$ during osteogenic differentiation. Using the recombinant BMP9 adenovirus, we find that low concentration of rh$TGF{\beta}1$ synergistically induces alkaline phosphatase activity in BMP9-transduced C3H10T1/2 cells and produces more pronounced matrix mineralization. However, higher concentrations of $TGF{\beta}1$ inhibit BMP9-induced osteogenic activity. Real-time PCR and Western blotting indicate that BMP9 in combination with low dose of $TGF{\beta}1$ potentiates the expression of later osteogenic markers osteopontin, osteocalcin and collagen type 1 (COL1a2), while higher concentrations of $TGF{\beta}1$ decrease the expression of osteopontin and osteocalcin but not COL1a2. Cell cycle analysis reveals that $TGF{\beta}1$ inhibits C3H10T1/2 proliferation in BMP9-induced osteogenesis and restricts the cells in $G_0/G_1$ phase. Our findings strongly suggest that $TGF{\beta}1$ may exert a biphasic effect on BMP9-induced osteogenic differentiation of mesenchymal stem cells.