• Title/Summary/Keyword: recombinant PCR

Search Result 423, Processing Time 0.025 seconds

Molecular Characterization of Trypanosoma cruzi Tc8.2 Gene Indicates Two Differential Locations for the Encoded Protein in Epimastigote and Trypomastigote Forms

  • Kian, Danielle;Lancheros, Cesar Armando Contreras;Damiani, Igor Alexandre Campos;Fernandes, Tamiris Zanforlin Olmos;Pinge-Filho, Phileno;dos Santos, Marcia Regina Machado;da Silveira, Jose Franco;Nakamura, Celso Vataru;da Silva, Joao Santana;Yamada-Ogatta, Sueli Fumie;Yamauchi, Lucy Megumi
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.4
    • /
    • pp.483-488
    • /
    • 2015
  • This report describes the molecular characterization of the Tc8.2 gene of Trypanosoma cruzi. Both the Tc8.2 gene and its encoded protein were analyzed by bioinformatics, while Northern blot and RT-PCR were used for the transcripts. Besides, immunolocalization of recombinant protein was done by immunofluorescence and electron microscopy. Analysis indicated the presence of a single copy of Tc8.2 in the T. cruzi genome and 2-different sized transcripts in epimastigotes/amastigotes and trypomastigotes. Immunoblotting showed 70 and 80 kDa polypeptides in epimastigotes and trypomastigotes, respectively, and a differential pattern of immunolocalization. Overall, the results suggest that Tc8.2 is differentially expressed during the T. cruzi life cycle.

Plant genome analysis using flow cytometry

  • Lee Jai-Heon;Kim Kee-Young;Chung Dae-Soo;Chung Won Bok;Kwon Oh-Chang
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 1999.05a
    • /
    • pp.162-163
    • /
    • 1999
  • The goal of this research was (1) to describe the conditions and parameters required for the cell cycle synchronization and the accumulation of large number of metaphase cells in maize and other cereal root tips, (2) to isolate intact metaphase chromosomes from root tips suitable for characterization by flow cytometry, and (3) to construct chromosome-specific libraries from maize. Plant metaphase chromosomes have been successfully synchronized and isolated from many cereal root-tips. DNA synthesis inhibitor (hydroxyurea) was used to synchronize cell cycle, follwed by treatement with trifluralin to accumulate metaphase chromosomes. Maize flow karyotypes show substantial variation among inbred lines. thish variation should be sueful in isolating individual chromosome types. In addition, flow cytometry is a useful method to measure DNA content of individual chromosomes in a genotyps, and to detect chromosomal variations. Individual chromosome peaks have been sorted from the maize hybrid B73/Mol7. Libraries were generated form the DOP-PCR amplification product from each peak. To date, we have analyzed clones from a library constructed from the maize chromosome 1 peak. Hybridization of labeled genomic DNA to clone inserts indicated that $24\%,\;18\%,\;and\;58\%$ of the clones were highly repetitive, medium repetitive, and low copy, respectively. Fifty percent of putative low cpoy clones showed single bands on inbred screening, blots, and the remaining $50\%$ were low copy repeats. Single copy clones showing polymorphism will be mapped using recombinant inbred mapping populations. Repetitive clones are being characterized by Southern blot analysis, and will be screened by in situ hybridization for their potential utility as chromosome specific markers.

  • PDF

Glyceraldehyde-3-Phosphate Dehydrogenase, an Immunogenic Streptococcus equi ssp. zooepidemicus Adhesion Protein and Protective Antigen

  • Fu, Qiang;Wei, Zigong;Liu, Xiaohong;Xiao, Pingping;Lu, Zhaohui;Chen, Yaosheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.579-585
    • /
    • 2013
  • Streptococcus equi ssp. zooepidemicus (Streptococcus zooepidemicus, SEZ) is an important pathogen associated with opportunistic infections of a wide range of species, including pigs and humans. The absence of a suitable vaccine makes it difficult to control SEZ infection. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been previously identified as an immunogenic protein using immunoproteomic techniques. In the present study, we confirmed that the sequence of GAPDH was highly conserved with other Streptococcus spp. The purified recombinant GAPDH could elicit a significant humoral antibody response in mice and confer significant protection against challenge with a lethal dose of SEZ. GAPDH could adhere to the Hep-2 cells, confirmed by flow cytometry, and inhibit adherence of SEZ to Hep-2 cells in an adherence inhibition assay. In addition, real-time PCR demonstrated that GAPDH was induced in vivo following infection of mice with SEZ. These suggest that GAPDH could play an important role in the pathogenesis of SEZ infection and could be a target for vaccination against SEZ.

Molecular Cloning, Overexpression, and Enzymatic Characterization of Glycosyl Hydrolase Family 16 ${\beta}$-Agarase from Marine Bacterium Saccharophagus sp. AG21 in Escherichia coli

  • Lee, Youngdeuk;Oh, Chulhong;Zoysa, Mahanama De;Kim, Hyowon;Wickramaarachchi, Wickramaarachchige Don Niroshana;Whang, Ilson;Kang, Do-Hyung;Lee, Jehee
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.913-922
    • /
    • 2013
  • An agar-degrading bacterium was isolated from red seaweed (Gelidium amansii) on a natural seawater agar plate, and identified as Saccharophagus sp. AG21. The ${\beta}$-agarase gene from Saccharophagus sp. AG21 (agy1) was screened by long and accurate (LA)-PCR. The predicted sequence has a 1,908 bp open reading frame encoding 636 amino acids (aa), and includes a glycosyl hydrolase family 16 (GH16) ${\beta}$-agarase module and two carbohydrate binding modules of family 6 (CBM6). The deduced aa sequence showed 93.7% and 84.9% similarity to ${\beta}$-agarase of Saccharophagus degradans and Microbulbifer agarilyticus, respectively. The mature agy1 was cloned and overexpressed as a His-tagged recombinant ${\beta}$-agarase (rAgy1) in Escherichia coli, and had a predicted molecular mass of 69 kDa and an isoelectric point of 4.5. rAgy1 showed optimum activity at $55^{\circ}C$ and pH 7.6, and had a specific activity of 85 U/mg. The rAgy1 activity was enhanced by $FeSO_4$ (40%), KCl (34%), and NaCl (34%), compared with the control. The newly identified rAgy1 is a ${\beta}$-agarase, which acts to degrade agarose to neoagarotetraose (NA4) and neoagarohexaose (NA6) and may be useful for applications in the cosmetics, food, bioethanol, and reagent industries.

Global Transcriptional Analysis Reveals Upregulation of NF-${\kappa}B$-responsive and Interferon-stimulated Genes in Monocytes by Treponema lecithinolyticum Major Surface Protein

  • Lee, Sung-Hoon;Lee, Hae-Ri;Jun, Hye-Kyoung;Choi, Bong-Kyu
    • International Journal of Oral Biology
    • /
    • v.36 no.2
    • /
    • pp.91-101
    • /
    • 2011
  • MspTL is the major surface protein of Treponema lecithinolyticum associated with periodontitis and endodontic infections. Our recent investigation revealed that MspTL induces proinflammatory cytokines and intercellular adhesion molecule 1 in THP-1 cells and periodontal ligament cells. In this study we conducted oligonucleotide microarray analysis to investigate the global transcriptional regulation in THP-1 cells stimulated with purified recombinant MspTL. MspTL upregulated the expression of 90 genes in THP-1 cells at least four fold, and the functions of these genes were categorized into adhesion, apoptosis/antiapoptosis, cell cycle/growth/differentiation, chemotaxis, cytoskeleton organization, immune response, molecular metabolism, proteolysis, signaling, and transcription. The majority of the modified genes are known to be NF-${\kappa}B$-responsive and interferon-stimulated genes (ISGs). The expression of 12 selected genes was confirmed by real-time RT-PCR. Because prostaglandin $E_2(PGE_2)$ is an important inflammatory mediator and Cox-2 was found to be induced by MspTL in the microarray analysis, we determined the level of $PGE_2$ in the culture supernatants of MspTL-treated cells and found that MspTL significantly increased $PGE_2$. Our results provide insight into the gene regulation of host cells in response to MspTL, and may contribute to the understanding of the molecular mechanism in periodontitis.

Development of succinate producing Cellulomonas flavigena mutants with deleted succinate dehydrogenase gene

  • Lee, Heon-Hak;Jeon, Min-Ki;Yoon, Min-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.1
    • /
    • pp.30-39
    • /
    • 2017
  • This study was performed to produce succinic acid from biomass by developing mutants of Cellulomonas flavigena in which the succinate dehydrogenase gene (sdh) is deleted. For development of succinate producing mutants, the upstream and downstream regions of sdh gene from C. flavigena and antibiotic resistance gene (neo, bla) were inserted into pKC1139, and the recombinant plasmids were transformed into Escherichia coli ET12567/pUZ8002 which is a donor strain for conjugation. C. flavigena was conjugated with the transformed E. coli ET12567/pUZ8002 to induce the deletion of sdh in chromosome of this bacteria by double-crossover recombination. Two mutants (C. flavigena H-1 and H-2), in which sdh gene was deleted in the chromosome, were constructed and confirmed by PCR. To estimate the production of succinic acid by the two mutants when the culture broth was fermented with biomass such as CMC, xylan, locust gum, and rapeseed straw; the culture broth was analyzed by HPLC analysis. The succinic acid in the culture broth was not detected as a fermentation products of all biomass. One of the reasons for this may be the conversion of succinic acid to fumaric acid by sdh genes (Cfla_1014 - Cfla_1017 or Cfla_1916 - Cfla_1918) which remained in the chromosomal DNA of C. flavigena H-1 and H-2. The other reason could be the conversion of succinyl-CoA to other metabolites by enzymes related to the bypass pathway of TCA cycle.

Molecular Cloning and Expression of Grass Carp MyoD in Yeast Pichia pastoris

  • Wang, Lixin;Bai, Junjie;Luo, Jianren;Chen, Hong;Ye, Xing;Jian, Qing;Lao, Haihua
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.22-28
    • /
    • 2007
  • MyoD, expressed in skeletal muscle lineages of vertebrate embryo, is one of muscle-specific basic helix-loop-helix (bHLH) transcription factors, which plays a key role in the determination and differentiation of all skeletal muscle lineages. In this study, a cDNA of grass carp MyoD was cloned and characterized from total RNA of grass carp embryos by RT-PCR. The full-length cDNA of grass carp MyoD is 1597 bp. The cDNA sequence analysis reveals an open reading frame of 825 bp coding for a protein of 275 amino acids, which includes a bHLH domain composed of basic domain (1-84th amino acids) and HLH domain (98-142th amino acids), without signal peptide. Then the MyoD cDNA of grass carp was cloned to yeast expression vector pPICZ$\alpha$A and transformed into P. pastoris GS115 strain, the recombinant MyoD protein with a molecular weight of about 31KD was obtained after inducing for 2d with 0.5% methanol in pH 8.0 BMGY medium, and the maximum yield was about 250 mg/L in shaking-flask fermentation. The results were expected to benefit for further studies on the crystal structure and physiological function of fish MyoD.

A novel pattern recognition protein of the Chinese oak silkmoth, Antheraea pernyi, is involved in the pro-PO activating system

  • Wang, Xialu;Zhang, Jinghai;Chen, Ying;Ma, Youlei;Zou, Wenjun;Ding, Guoyuan;Li, Wei;Zhao, Mingyi;Wu, Chunfu;Zhang, Rong
    • BMB Reports
    • /
    • v.46 no.7
    • /
    • pp.358-363
    • /
    • 2013
  • In this paper, we firstly reported a C-type lectin cDNA clone of 1029 bps from the larvae of A. Pernyi (Ap-CTL) using PCR and RACE techniques. The full-length cDNA contains an open reading frame encoding 308 amino acid residues which has two different carbohydrate-recognition domains (CRDs) arranged in tandem. To investigate the biological activities in the innate immunity, recombinant Ap-CTL was expressed in E. coli with a 6-histidine at the amino-terminus (Ap-rCTL). Besides acted as a broad-spectrum recognition protein binding to a wide range of PAMPs and microorganisms, Ap-rCTL also had the ability to recognize and trigger the agglutination of bacteria and fungi. In the proPO activation assay, Ap-rCTL specifically restored the PO activity of hemolymph blocked by anti-Ap-rCTL antibody in the presence of different PAMPs or microorganisms. In summary, Ap-rCTL plays an important role in insect innate immunity as an pattern recognition protein.

Cloning and Characterization of Bombyx mori Cyclophilin A

  • Kim, Sung-Wan;Yun, Eun-Young;Kim, Seong-Ryul;Park, Seung-Won;Kang, Seok-Woo;Kwon, O-Yu;Goo, Tae-Won
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.23 no.2
    • /
    • pp.223-229
    • /
    • 2011
  • Cyclophilins are originally identified as cytosolic binding protein of the immunosuppressive drug cyclosporine A. They have an activity of peptidyl prolyl cis/trans-isomerases (PPIase), which may play important roles in protein folding, trafficking, assembly and cell signaling. In this study, we report the cloning and characterization of a Bombyx mori cyclophilin A (bCypA) cDNA. The full-length cDNA of bCypA consist of 947 nucleotides with a polyadenylation signal sequence AATAAA and contain an open reading frame of 498 nucleotides encoding a polypeptide of 166 amino acids. The deduced amino acid sequence of bCypA shares a central peptidyl prolyl cis/trans-isomerase and a cyclosporin-A-binding domain with other cyclophilin sequences. Relative quantification real-time (RT) PCR analysis shows that mRNA transcripts of bCypA are detected in all the investigated tissues and highest expression level in the skin of 3-day-old 5 instar larva. Also, bCypA had PPIase activity on the proline-containing peptides. Accordingly, we suggest that bCypA is a new member of the cyclophilin A (CyPA) family and will be useful for quality control of bioactivity recombinant proteins with proline-containing peptides.

Effect of BMP-7 on osteoblastic differentiation of rat periodontal ligament cells (백서 치주인대세포의 분화에 대한 Bone morphogenetic protein-7의 영향)

  • Lee, Ho-Jae;Kim, Young-Jun;Chung, Hyun-Ju
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.3
    • /
    • pp.747-760
    • /
    • 2005
  • Periodontal therapy has dealt primarily with attempts at arresting progression of disease. however, more recent techniques have focused on regenerating the periodontal ligament having the capacity to regenerate the periodontium. Recombinant human bone morphogenetic protein-7(rhBMP-7) can differentiate the osteoprogenitor cells and induce bone formation. The purpose of this study was to evaluate the effect of BMP-7 on rat periodontal ligament cells differentiation, in vitro. In the control group, cells was cultured with DMEM media. In the experimental groups, cells were cultured with rhBMP-7 in concentration of 10, 25, 50 and 100 ng/ml. Each group was characterized by examining alkaline phosphatase activity at 3 and 5 days of culture and the ability to produce mineralized nodules of rat calvarial cells at 14 days of culture. Synthesis of type I collagen(COL-I), osteocalcin(OCN), and bone sialoprotein(BSP) was evaluated by RT-PCR at 7 days of culture. Activation of Smad proteins and p38 MAP kinase was determined by western blot analysis of the cell lysates. Alkaline phosphatase activity was significantly increased in the concentration of BMP-7 50 ng/ml and 100 ng/ml compared to the control(p<0.05). The mineralized bone nodule formation was greater with addition of 50 ng/ml and 100 ng/ml BMP-7 than the control(p<0.01). In 7 days' culture, the expressions of COL-I, BSP, and OCN was increased by BMP-7 in concentration of 10 $ng/ml{\sim}100$ ng/ml. In western blot analysis, BMP-7 treated culture cells expressed Smad 1,5,8 in dose-dependent manner, whereas BMP-7 did not activate phosphorylated form of p38 MAP kinase. These result suggested that BMP-7 stimulate rat periodontal ligament cells to differentiate toward osteoblast phenotype and increase bone matrix production by activation of BMP-Smad pathway.