• Title/Summary/Keyword: recombinant E (rE)

Search Result 198, Processing Time 0.024 seconds

Transformation of Bacillus subtilis Protoplast by Recombinant Plasmid DNA (재조합 Plasmid DNA에 의한 Bacillus subtilis의 형질전환)

  • Kim, Sang-Dal;John Spizizen
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.4
    • /
    • pp.345-348
    • /
    • 1985
  • Recombinant chimeric plasmid constructed with Xba I digested pUBl10 and -pE194 was transformed by polyethylene glycol induced protoplast transformation system into Bacillus subtilis BR 151 on the mannitol regeneration media, and two genes of antibiotics resistance were expressed simultaneously in the transfromant. Transformation frequency of the recombinant plasmid was 6.5 $\times$ 10$^{-5}$ on the mannitol regeneration agar plate containing neomycin and erythromycin. The replication of recombinant plasmid in the recipient cells was confirmed by the alkaline extraction method and agarose gel electrophoresis.

  • PDF

Stability of Recombinant Plasmids Carrying the stb Locus of E. coli IncFII NR1 Plasmid in E. coli and Yeast (대장균과 효모에서 Escherichia coli IncFII NR1 플라스미드의 stb 좌위를 포함하는 재조합 플라스미드의 안정성에 관한 연구)

  • Chung, Kung-Sook;Kim, Choon-Kwang;Kim, Kyu-Won
    • Korean Journal of Microbiology
    • /
    • v.31 no.1
    • /
    • pp.37-43
    • /
    • 1993
  • The effect of stb locus of E. COLI IncFII plasmid NR1 on the stability of chimeric plasmids was investigated. First, we have isolated the stability locus (stb) from E. coli NR1 plasmid and then inserted into the three different vectors, pUC8, YRp17 and YEp24. By examining their stability in E. coli and yeast, we showed that the recombinant plasmids containing stb locus were resonably stable. Also, by comparing the amounts of the rDNA fragments per haploid genome with those of the plasmid fragments, we showed they copy number of recombinant plasmids was not increased. Consequently, the stb locus of E. coli IncFII plasmid NR1 stabilized the chimeric plasmids but did not affect the replication or copy number of plasmids.

  • PDF

Cloning and overexpression of lysozyme from Spodoptera litura in prokaryotic system

  • Kim, Jong-Wan;Park, Soon-Ik;Yoe, Jee-Hyun;Yoe, Sung-Moon
    • Animal cells and systems
    • /
    • v.15 no.1
    • /
    • pp.29-36
    • /
    • 2011
  • Insect lysozymes are basic, cationic proteins synthesized in fat body and hemocytes in response to bacterial infections and depolymerize the bacterial cell wall. The c-type lysozyme of the insect Spodoptera litura (SLLyz) is a single polypeptide chain of 121 residues with four disulfide bridges and 17 rare codons and is approximately 15 kDa. The full-length SLLyz cDNA is 1039 bp long with a poly(A) tail, and contains an open reading frame of 426 bp long (including the termination codon), flanked by a 54 bp long 5' UTR and a 559 bp long 3' UTR. As a host for the production of high-level recombinant proteins, E. coli is used most commonly because of its low cost and short generation time. However, the soluble expression of heterologous proteins in E. coli is not trivial, especially for disulfide-bonded proteins. In order to prevent inclusion body formation, GST was selected as a fusion partner to enhance the solubility of recombinant protein, and fused to the amplified products encoding mature SLLyz. The expression vector pGEX-4T-1/rSLLyz was then transformed into E. coli BL21(DE3)pLysS for soluble expression of rSLLyz, and the soluble fusion protein was purified successfully. Inhibition zone assay demonstrated that rSLLyz showed antibacterial activity against B. megaterium. These results demonstrate that the GST fusion expression system in E. coli described in this study is efficient and inexpensive in producing a disulfide-bonded rSLLyz in soluble, active form, and suggest that the insect lysozyme is an interesting system for future structural and functional studies.

Conditional Replication of a Recombinant Adenovirus Studied Using Neomycin as a Selective Marker

  • Xue, Feng;Qi, Yi-Peng;Joshua, Mallam Nock;Lan, Ping;Dong, Chang-Yuan
    • BMB Reports
    • /
    • v.36 no.3
    • /
    • pp.275-281
    • /
    • 2003
  • An E1B-defective adenovirus, named r2/Ad carrying the neo expression cassette, was constructed by homologous recombination. The construction, selection (using neomycin as a selective marker), and propagation of the recombinant virus was performed in human embryonic kidney 293 cells (HEK 293). An in vitro study demonstrated that this recombinant virus has the ability to replicate in and lyse some p53-deficient human tumor cells such as human glioma tumor cells (U251) and human bladder cells (EJ), but not in some cells with functional p53, such as human adenocarcinoma cells (A549) and human fibroblast cells (MRC-5). Also, based on the cytopathic effect (CPE), it was demonstrated, under identical conditions, that the U251 cells were more sensitive to r2/Ad replication than the EJ cells. In this paper, we report that r2/Ad could be very useful in studying the in vitro selective replication of E1B-defective adenovirus and has great potential in cancer gene therapy.

Development of Recombinant Escherichia coli Expressing Rhodotorula glutinis Epoxide Hydrolase (Rhodotorula glutinis의 epoxide hydrolase 고효율 발현 유전자 재조합 Escherichia coli 생촉매 개발)

  • Lee Soo-Jung;Kim Hee-Sook
    • Journal of Life Science
    • /
    • v.16 no.3 s.76
    • /
    • pp.415-419
    • /
    • 2006
  • The epoxide hydrolase (EH) of Rhodotorula glutinis which has a high enantioselectivity against aromatic epoxide substrates was expressed to high levels in Escherichia coli based on codon usage. We analysed the Preference of codon usage between the yeast, R. glutinis, and bacteria, E. coli. E. coli, Rosetta(DE3)pLysS, harbors pRARE plasmid with tRNA genes for rare-codons was employed as a host strain. The recombinant E. coli expressing R. glutinis EH showed an enhanced enantioselective hydrolysis activity toward racemic styrene oxide. Enantiopure (S)-styrene oxide with a high enantiopurity of 99% ee (enantiomeric excess) was obtained from racemic substrates.

Vaccination of Shrimp (Litopenaeus vannamei) against White Spot Syndrome Virus (WSSV) by Oral Vaccination of Recombinant Fusion Protein, rVP19+28 (사료급이(oral feeding)에 의한 vaccination을 통한 흰반점바이러스(WSSV)에 대한 재조합단백질 rVP19+28의 백신효능의 확인)

  • Nguyen, Thi-Hoai;Kim, Yeong-Jin;Choi, Mi-Ran;Kim, Sung-Koo
    • Journal of Life Science
    • /
    • v.20 no.8
    • /
    • pp.1181-1185
    • /
    • 2010
  • This study was carried out to evaluate the vaccination effects of recombinant fusion protein rVP19+28 against WSSV in shrimp, Litopenaeus vannamei. The VP19+28 gene fused with VP19 and VP28 genes was inserted into pET-28a(+) expression vector and cloned in E. coli BL21 (DE3) to produce fused gene product recombinant VP19+VP28 as a single protein. For the vaccination, the shrimps were fed with pellets coated with purified recombinant protein, rVP19+28, for 2 weeks. Then, constant amounts of WSSV at $1{\times}10^2$ diluted stocks were injected to the muscle of the shrimp for the in vivo challenge tests. Non-vaccinated shrimps showed a cumulative mortality of 100% at 11 days post-challenge. The shrimps vaccinated with the inactivated E. coli BL21 as a host cell control showed cumulative mortality of 100% at 17 days post-challenge. The shrimps vaccinated with rVP19, rVP28 and rVP19+28 showed mortalities of 66.7%, 41.7% and 41.7% at 21 days post-challenge, respectively. These results indicated that the rVP28 and rVP19+28 had relatively high vaccination effects against WSSV infection. However, this study suggests that the fusion protein rVP19+28 was more effective for the protection of shrimp against WSSV than rVP28, even though the cumulative mortalities were the same 21 days post-challenge.

High Level Production of Supra Molecular Weight Poly(3-Hydroxybutyrate) by Metabolically Engineered Escherichia coli

  • Park, Jong-il;Lee, Sang-Yup
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.3
    • /
    • pp.196-200
    • /
    • 2004
  • The supra molecular weight poly(〔R〕-3-hydroxybutyrate) (PH B), having a molecular weight greater than 2 million Da, has recently been found to possess improved mechanical properties compared with the normal molecular weight PHB, which has a molecular weight of less than 1 million Da. However, applications for this PHB have been hampered due to the difficulty of its production. Reported here, is the development of a new metabolically engineered Escherichia coli strain and its fermentation for high level production of supra molecular weight PHB. Recombinant E. coli strains, harboring plasm ids of different copy numbers containing the Alcaligenes latus PHB biosynthesis genes, were cultured and the molecular weights of the accumulated PHB were compared. When the recombinant E. coli XL1-Blue, harboring a medium-copy-number pJC2 containing the A. latus PHB biosynthesis genes, was cultivated by fed-batch culture at pH 6.0, supra molecular weight PHB could be produced at up to 89.8 g/L with a productivity of 2.07 g PHB/L-h. The molecular weight of PHB obtained under these conditions was as high as 22 MDa, exceeding by an order of magnitude the molecular weight of PHB typically produced in Ralstonia eutropha or recombinant E. coli.

Construction of Plasmids for Overproduction of L-Phenylalanine (L-페닐알라닌 대량생산을 위한 재조합 플라스미드 구성)

  • Lee, Sae-Bae;Park, Chung;Won, Chan-Hee;Choi, Duk-Ho;Lim, Bun-San
    • Korean Journal of Microbiology
    • /
    • v.28 no.2
    • /
    • pp.169-173
    • /
    • 1990
  • For the overproduction of L-phenylalanine using Escherichia coli, the authors constructed various recombinant plasmids including pMW 10, pMW 11 and pMW 12. The $aroF{FR}$ and $pheA^{FR}$ genes for the production of L-phenylalanine were isolated from Escherichia coli MWEC 101-5 strains. The productivity and atability of Escherichia coli regulatory mutants containing recombinant plasmids were investigated to evaluate the efficiency of the $aroF^{FR}$ and $pheA^{FR}$ genes. The MWEC 101-5/pMW 11 strain produced 24.3g/l of L-phenylalanine while its stability was 73.8 percent. The specific activity of prephenate dehydratase in the MWEC 101-5/pMW 11 strain increased by 26-fold compared with that of Escherichia coli K-12.

  • PDF

Purification and Characterization of Clostridium thermocellum Xylanase from Recombinant Escherichia coli

  • Koo, Bon-Joon;Oh, Hwa-Gyun;Cho, Ki-Haeng;Yang, Chang-Kun;Jung, Kyung-Hwa;Ryu, Dai-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.414-419
    • /
    • 1996
  • The xylnX gene encoding a xylanase from Clostridium thermocellum ATCC27405 was cloned in the plasmid pJH27, an E. coli-Bacillus shuttle vector and the resultant recombinant plasmid, pJX18 was transformed into E. coli HB101. The overexpressed xylanase was found to be secreted into the periplasmic space of the recombinant E. coli cells. The crude enzyme was obtained by treating the E. coli cells with lysozyme, and purified by DEAE-Sepharose column chromatography. Molecular wieght of the xylanase was estimated to be 53 kDa by gel filtration. The pI value was determined to be pH 8.8. The N-terminal sequence of the enzyme protein was Asp-Asp-Asn-Asn-Ala-Asn-Leu-Val-Ser-Asn which was considered to be the sequence of that of the mature form protein. The Km value of the enzyme for oat spelt xylan was calculated to be 2.63 mg/ml and the Vmax value was $0.47 {\mu}mole/min$. The xylanase had a pH optimum for its activity at pH 5.4 and a temperature optimum at $60^{\circ}C$. The enzyme hydrolyzed xylan into xylooligosaccharides which were composed mainly of xylobiose (40%) and xyloltriose (12%) after 5 hour reaction. This result indicates that the xylanase from C. thermocellum ATCC27405 is an endo-acting enzyme.

  • PDF

IgE Binding Reactivity of Peptide Fragments of Bla g 4, a Major German Cockroach Allergen

  • Shin, Kwang-Hyun;Jeong, Kyoung-Yong;Hong, Chein-Soo;Yong, Tai-Soon
    • Parasites, Hosts and Diseases
    • /
    • v.47 no.1
    • /
    • pp.31-36
    • /
    • 2009
  • Cockroaches have been recognized as a major cause of asthma. Bla g 4 is one of the most important German cockroach allergens. The aim of this study is to investigate IgE reactivity to the recombinant Bla g 4 (rBla g 4) in the sera of allergic patients and identify linear IgE binding epitope. For protein expression, full-length Bla g 4 (EF202172) was divided into 5 overlapping peptide fragments (E1: aa 1-100, E2: aa 34-77, E3: aa 74-117, E4: aa 114-156, and E5: aa 153-182). The full-length and 5 peptide fragments of Bla g 4 was generated by PCR and over-expressed in E. coli BL21 (DE3). The IgE binding reactivities of the full-length and peptide fragments were measured by ELISA using 32 serum samples of cockroach allergy. The sera of 8 patients (25%) reacted with rBla g 4. Four sera (100%) showed IgE-binding reactivity to full-length and peptide fragment 4, and 2 sera (50%) reacted with peptide fragment 2. One (20%) serum reacted with peptide fragment 3. The results of ELISA using overlapping recombinant fragments indicated that the epitope region was located at amino acid sequences 34-73 and 78-113, and major IgE epitope of Bla g 4 was located at amino acid sequences 118-152 of C-terminal. B-cell epitope analysis of German cockroach allergen Bla g 4 could contribute to the strategic development of more specific and potentially efficacious immunotherapy.