• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.03 seconds

Performance Analysis of Automatic Target Recognition Using Simulated SAR Image (표적 SAR 시뮬레이션 영상을 이용한 식별 성능 분석)

  • Lee, Sumi;Lee, Yun-Kyung;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.283-298
    • /
    • 2022
  • As Synthetic Aperture Radar (SAR) image can be acquired regardless of the weather and day or night, it is highly recommended to be used for Automatic Target Recognition (ATR) in the fields of surveillance, reconnaissance, and national security. However, there are some limitations in terms of cost and operation to build various and vast amounts of target images for the SAR-ATR system. Recently, interest in the development of an ATR system based on simulated SAR images using a target model is increasing. Attributed Scattering Center (ASC) matching and template matching mainly used in SAR-ATR are applied to target classification. The method based on ASC matching was developed by World View Vector (WVV) feature reconstruction and Weighted Bipartite Graph Matching (WBGM). The template matching was carried out by calculating the correlation coefficient between two simulated images reconstructed with adjacent points to each other. For the performance analysis of the two proposed methods, the Synthetic and Measured Paired Labeled Experiment (SAMPLE) dataset was used, which has been recently published by the U.S. Defense Advanced Research Projects Agency (DARPA). We conducted experiments under standard operating conditions, partial target occlusion, and random occlusion. The performance of the ASC matching is generally superior to that of the template matching. Under the standard operating condition, the average recognition rate of the ASC matching is 85.1%, and the rate of the template matching is 74.4%. Also, the ASC matching has less performance variation across 10 targets. The ASC matching performed about 10% higher than the template matching according to the amount of target partial occlusion, and even with 60% random occlusion, the recognition rate was 73.4%.

Hand Biometric Information Recognition System of Mobile Phone Image for Mobile Security (모바일 보안을 위한 모바일 폰 영상의 손 생체 정보 인식 시스템)

  • Hong, Kyungho;Jung, Eunhwa
    • Journal of Digital Convergence
    • /
    • v.12 no.4
    • /
    • pp.319-326
    • /
    • 2014
  • According to the increasing mobile security users who have experienced authentication failure by forgetting passwords, user names, or a response to a knowledge-based question have preference for biological information such as hand geometry, fingerprints, voice in personal identification and authentication. Therefore biometric verification of personal identification and authentication for mobile security provides assurance to both the customer and the seller in the internet. Our study focuses on human hand biometric information recognition system for personal identification and personal Authentication, including its shape, palm features and the lengths and widths of the fingers taken from mobile phone photographs such as iPhone4 and galaxy s2. Our hand biometric information recognition system consists of six steps processing: image acquisition, preprocessing, removing noises, extracting standard hand feature extraction, individual feature pattern extraction, hand biometric information recognition for personal identification and authentication from input images. The validity of the proposed system from mobile phone image is demonstrated through 93.5% of the sucessful recognition rate for 250 experimental data of hand shape images and palm information images from 50 subjects.

Face Recognition based on SURF Interest Point Extraction Algorithm (SURF 특징점 추출 알고리즘을 이용한 얼굴인식 연구)

  • Kang, Min-Ku;Choo, Won-Kook;Moon, Seung-Bin
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.3
    • /
    • pp.46-53
    • /
    • 2011
  • This paper proposes a SURF (Speeded Up Robust Features) based face recognition method which is one of typical interest point extraction algorithms. In general, SURF based object recognition is performed in interest point extraction and matching. In this paper, although, proposed method is employed not only in interest point extraction and matching, but also in face image rotation and interest point verification. image rotation is performed to increase the number of interest points and interest point verification is performed to find interest points which were matched correctly. Although proposed SURF based face recognition method requires more computation time than PCA based one, it shows better recognition rate than PCA algorithm. Through this experimental result, I confirmed that interest point extraction algorithm also can be adopted in face recognition.

A Study on the Diphone Recognition of Korean Connected Words and Eojeol Reconstruction (한국어 연결단어의 이음소 인식과 어절 형성에 관한 연구)

  • ;Jeong, Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.46-63
    • /
    • 1995
  • This thesis described an unlimited vocabulary connected speech recognition system using Time Delay Neural Network(TDNN). The recognition unit is the diphone unit which includes the transition section of two phonemes, and the number of diphone unit is 329. The recognition processing of korean connected speech is composed by three part; the feature extraction section of the input speech signal, the diphone recognition processing and post-processing. In the feature extraction section, the extraction of diphone interval in input speech signal is carried and then the feature vectors of 16th filter-bank coefficients are calculated for each frame in the diphone interval. The diphone recognition processing is comprised by the three stage hierachical structure and is carried using 30 Time Delay Neural Networks. particularly, the structure of TDNN is changed so as to increase the recognition rate. The post-processing section, mis-recognized diphone strings are corrected using the probability of phoneme transition and the probability o phoneme confusion and then the eojeols (Korean word or phrase) are formed by combining the recognized diphones.

  • PDF

Sound recognition and tracking system design using robust sound extraction section (주변 배경음에 강인한 구간 검출을 통한 음원 인식 및 위치 추적 시스템 설계)

  • Kim, Woo-Jun;Kim, Young-Sub;Lee, Gwang-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.8
    • /
    • pp.759-766
    • /
    • 2016
  • This paper is on a system design of recognizing sound sources and tracing locations from detecting a section of sound sources which is strong in surrounding environmental sounds about sound sources occurring in an abnormal situation by using signals within the section. In detection of the section with strong sound sources, weighted average delta energy of a short section is calculated from audio signals received. After inputting it into a low-pass filter, through comparison of values of the output result, a section strong in background sound is defined. In recognition of sound sources, from data of the detected section, using an HMM(: Hidden Markov Model) as a traditional recognition method, learning and recognition are realized from creating information to recognize sound sources. About signals of sound sources that surrounding background sounds are included, by using energy of existing signals, after detecting the section, compared with the recognition through the HMM, a recognition rate of 3.94% increase is shown. Also, based on the recognition result, location grasping by using TDOA(: Time Delay of Arrival) between signals in the section accords with 97.44% of angles of a real occurrence location.

The Improving Method of Facial Recognition Using the Genetic Algorithm (유전자 알고리즘에 의한 얼굴인식성능의 향상 방안)

  • Bae, Kyoung-Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.1
    • /
    • pp.95-105
    • /
    • 2005
  • As the security system using facial recognition, the recognition performance depends on the environments (e. g. face expression, hair style, age and make-up etc.) For the revision of easily changeable environment, it's generally used to set up the threshold, replace the face image which covers the threshold into images already registered, and update the face images additionally. However, this usage has the weakness of inaccuracy matching results or can easily active by analogous face images. So, we propose the genetic algorithm which absorbs greatly the facial similarity degree and the recognition target variety, and has excellence studying capacity to avoid registering inaccuracy. We experimented variable and similar face images (each 30 face images per one, total 300 images) and performed inherent face images based on ingredient analysis as face recognition technique. The proposed method resulted in not only the recognition improvement of a dominant gene but also decreasing the reaction rate to a recessive gene.

  • PDF

Geometrical Reorientation of Distorted Road Sign using Projection Transformation for Road Sign Recognition (도로표지판 인식을 위한 사영 변환을 이용한 왜곡된 표지판의 기하교정)

  • Lim, Hee-Chul;Deb, Kaushik;Jo, Kang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1088-1095
    • /
    • 2009
  • In this paper, we describe the reorientation method of distorted road sign by using projection transformation for improving recognition rate of road sign. RSR (Road Sign Recognition) is one of the most important topics for implementing driver assistance in intelligent transportation systems using pattern recognition and vision technology. The RS (Road Sign) includes direction of road or place name, and intersection for obtaining the road information. We acquire input images from mounted camera on vehicle. However, the road signs are often appeared with rotation, skew, and distortion by perspective camera. In order to obtain the correct road sign overcoming these problems, projection transformation is used to transform from 4 points of image coordinate to 4 points of world coordinate. The 4 vertices points are obtained using the trajectory as the distance from the mass center to the boundary of the object. Then, the candidate areas of road sign are transformed from distorted image by using homography transformation matrix. Internal information of reoriented road signs is segmented with arrow and the corresponding indicated place name. Arrow area is the largest labeled one. Also, the number of group of place names equals to that of arrow heads. Characters of the road sign are segmented by using vertical and horizontal histograms, and each character is recognized by using SAD (Sum of Absolute Difference). From the experiments, the proposed method has shown the higher recognition results than the image without reorientation.

Video character recognition improvement by support vector machines and regularized discriminant analysis (서포트벡터머신과 정칙화판별함수를 이용한 비디오 문자인식의 분류 성능 개선)

  • Lim, Su-Yeol;Baek, Jang-Sun;Kim, Min-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.4
    • /
    • pp.689-697
    • /
    • 2010
  • In this study, we propose a new procedure for improving the character recognition of text area extracted from video images. The recognition of strings extracted from video, which are mixed with Hangul, English, numbers and special characters, etc., is more difficult than general character recognition because of various fonts and size, graphic forms of letters tilted image, disconnection, miscellaneous videos, tangency, characters of low definition, etc. We improved the recognition rate by taking commonly used letters and leaving out the barely used ones instead of recognizing all of the letters, and then using SVM and RDA character recognition methods. Our numerical results indicate that combining SVM and RDA performs better than other methods.

Recognition of Car Plate using SOM Algorithm and Development of Parking Control System (SOM 알고리즘을 이용한 차량 번호판 인식과 주차 관리 시스템 개발)

  • 김광백
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.1052-1061
    • /
    • 2003
  • In this paper, we propose the car plate recognition using SOM algorithm and describe the parking control system using the proposed car plate recognition. The recognition of car plate was investigated by means of the SOM algorithm. The morphological information of horizontal and vertical edges was used to extract a plate area from a car image. In addition, the 4-direction contour tracking algorithm was applied to extract the specific area, which includes characters from an extracted plate area. The extracted characteristic area was recognized by using the SOM algorithm. In this paper, 50 car images were tested. The extraction rate obtained by the proposed extraction method showed better results than that from the color information of RGB and HSI, respectively. And the car plate recognition using SOM algorithm was very efficient. We develop the parking control system using the proposed car plate recognition that shows performance improvement by the experimental results.

Face Recognition using Vector Quantizer in Eigenspace (아이겐공간에서 벡터 양자기를 이용한 얼굴인식)

  • 임동철;이행세;최태영
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.185-192
    • /
    • 2004
  • This paper presents face recognition using vector quantization in the eigenspace of the faces. The existing eigenface method is not enough for representing the variations of faces. For making up for its defects, the proposed method use a clustering of feature vectors by vector quantization in eigenspace of the faces. In the trainning stage, the face images are transformed the points in the eigenspace by eigeface(eigenvetor) and we represent a set of points for each people as the centroids of vector quantizer. In the recognition stage, the vector quantizer finds the centroid having the minimum quantization error between feature vector of input image and centriods of database. The experiments are performed by 600 faces in Faces94 database. The existing eigenface method has minimum 64 miss-recognition and the proposed method has minimum 20 miss-recognition when we use 4 codevectors. In conclusion, the proposed method is a effective method that improves recognition rate through overcoming the variation of faces.