• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.029 seconds

Face Recognition Method using Individual Eigenfaces Space (개인별 고유얼굴 공간을 이용한 얼굴 인식 방법)

  • Lee, Kyung-Hee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.5
    • /
    • pp.119-123
    • /
    • 2006
  • We present a new face recognition method, which selects eigenfaces by our algorithm instead of the existing eigenfaces selection method that chooses eigenfaces by the value of corresponding eigenvalues. We justify our method by comparing our method with traditional one by experiments with YALE, ORL database. By using our algorithm in selecting the eigenfaces, we obtain higher recognition rate than the existing schemes.

Study On Masked Face Detection And Recognition using transfer learning

  • Kwak, NaeJoung;Kim, DongJu
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.294-301
    • /
    • 2022
  • COVID-19 is a crisis with numerous casualties. The World Health Organization (WHO) has declared the use of masks as an essential safety measure during the COVID-19 pandemic. Therefore, whether or not to wear a mask is an important issue when entering and exiting public places and institutions. However, this makes face recognition a very difficult task because certain parts of the face are hidden. As a result, face identification and identity verification in the access system became difficult. In this paper, we propose a system that can detect masked face using transfer learning of Yolov5s and recognize the user using transfer learning of Facenet. Transfer learning preforms by changing the learning rate, epoch, and batch size, their results are evaluated, and the best model is selected as representative model. It has been confirmed that the proposed model is good at detecting masked face and masked face recognition.

A New Bank-card Number Identification Algorithm Based on Convolutional Deep Learning Neural Network

  • Shi, Rui-Xia;Jeong, Dong-Gyu
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.47-56
    • /
    • 2022
  • Recently bank card number recognition plays an important role in improving payment efficiency. In this paper we propose a new bank-card number identification algorithm. The proposed algorithm consists of three modules which include edge detection, candidate region generation, and recognition. The module of 'edge detection' is used to obtain the possible digital region. The module of 'candidate region generation' has the role to expand the length of the digital region to obtain the candidate card number regions, i.e. to obtain the final bank card number location. And the module of 'recognition' has Convolutional deep learning Neural Network (CNN) to identify the final bank card numbers. Experimental results show that the identification rate of the proposed algorithm is 95% for the card numbers, which shows 20% better than that of conventional algorithm or method.

A Survey on the Recognition and Preference of Commercial Cream Soup Focused on Yungnam Area (시판용 수프에 대한 소비자 인지도 및 기호도 조사 -영남지역을 중심으로-)

  • Oh, Young-Sub
    • Journal of the Korean Society of Food Culture
    • /
    • v.21 no.5
    • /
    • pp.456-462
    • /
    • 2006
  • The object of this research is to assess both the preference and the recognition on commercial cream soup by gender and age group to design reliable proposals for better product. Of 461 questionnaires handed out to residents at Daegu, Busan and Gyeongju in youngnam area. The data were analysed by chi-square test, t-test and one way ANOVA. The results are summarized as following: (1) the response rate of 78.6 percent liked soup because of it's taste, (2) respondents in ages 20${\sim}$30's showed higher preference than respondents in ages 40${\sim}$50's (3) main ingredient is the most important consideration as purchase, (4) vegetable cream soup and mushroom cream soup are shown as highest ranking on the recognition of soup, (5) mushroom cream soup and corn cream soup are shown as highest ranking on the preference of soup.

CRNN-Based Korean Phoneme Recognition Model with CTC Algorithm (CTC를 적용한 CRNN 기반 한국어 음소인식 모델 연구)

  • Hong, Yoonseok;Ki, Kyungseo;Gweon, Gahgene
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.3
    • /
    • pp.115-122
    • /
    • 2019
  • For Korean phoneme recognition, Hidden Markov-Gaussian Mixture model(HMM-GMM) or hybrid models which combine artificial neural network with HMM have been mainly used. However, current approach has limitations in that such models require force-aligned corpus training data that is manually annotated by experts. Recently, researchers used neural network based phoneme recognition model which combines recurrent neural network(RNN)-based structure with connectionist temporal classification(CTC) algorithm to overcome the problem of obtaining manually annotated training data. Yet, in terms of implementation, these RNN-based models have another difficulty in that the amount of data gets larger as the structure gets more sophisticated. This problem of large data size is particularly problematic in the Korean language, which lacks refined corpora. In this study, we introduce CTC algorithm that does not require force-alignment to create a Korean phoneme recognition model. Specifically, the phoneme recognition model is based on convolutional neural network(CNN) which requires relatively small amount of data and can be trained faster when compared to RNN based models. We present the results from two different experiments and a resulting best performing phoneme recognition model which distinguishes 49 Korean phonemes. The best performing phoneme recognition model combines CNN with 3hop Bidirectional LSTM with the final Phoneme Error Rate(PER) at 3.26. The PER is a considerable improvement compared to existing Korean phoneme recognition models that report PER ranging from 10 to 12.

Classification of Three Different Emotion by Physiological Parameters

  • Jang, Eun-Hye;Park, Byoung-Jun;Kim, Sang-Hyeob;Sohn, Jin-Hun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.271-279
    • /
    • 2012
  • Objective: This study classified three different emotional states(boredom, pain, and surprise) using physiological signals. Background: Emotion recognition studies have tried to recognize human emotion by using physiological signals. It is important for emotion recognition to apply on human-computer interaction system for emotion detection. Method: 122 college students participated in this experiment. Three different emotional stimuli were presented to participants and physiological signals, i.e., EDA(Electrodermal Activity), SKT(Skin Temperature), PPG(Photoplethysmogram), and ECG (Electrocardiogram) were measured for 1 minute as baseline and for 1~1.5 minutes during emotional state. The obtained signals were analyzed for 30 seconds from the baseline and the emotional state and 27 features were extracted from these signals. Statistical analysis for emotion classification were done by DFA(discriminant function analysis) (SPSS 15.0) by using the difference values subtracting baseline values from the emotional state. Results: The result showed that physiological responses during emotional states were significantly differed as compared to during baseline. Also, an accuracy rate of emotion classification was 84.7%. Conclusion: Our study have identified that emotions were classified by various physiological signals. However, future study is needed to obtain additional signals from other modalities such as facial expression, face temperature, or voice to improve classification rate and to examine the stability and reliability of this result compare with accuracy of emotion classification using other algorithms. Application: This could help emotion recognition studies lead to better chance to recognize various human emotions by using physiological signals as well as is able to be applied on human-computer interaction system for emotion recognition. Also, it can be useful in developing an emotion theory, or profiling emotion-specific physiological responses as well as establishing the basis for emotion recognition system in human-computer interaction.

Machine Learning based Traffic Light Detection and Recognition Algorithm using Shape Information (기계학습 기반의 신호등 검출과 형태적 정보를 이용한 인식 알고리즘)

  • Kim, Jung-Hwan;Kim, Sun-Kyu;Lee, Tae-Min;Lim, Yong-Jin;Lim, Joonhong
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.46-52
    • /
    • 2018
  • The problem of traffic light detection and recognition has recently become one of the most important topics in various researches on autonomous driving. Most algorithms are based on colors to detect and recognize traffic light signals. These methods have disadvantage in that the recognition rate is lowered due to the change of the color of the traffic light, the influence of the angle, distance, and surrounding illumination environment of the image. In this paper, we propose machine learning based detection and recognition algorithm using shape information to solve these problems. Unlike the existing algorithms, the proposed algorithm detects and recognizes the traffic signals based on the morphological characteristics of the traffic lights, which is advantageous in that it is robust against the influence from the surrounding environments. Experimental results show that the recognition rate of the signal is higher than those of other color-based algorithms.

Studies on Lytic, Tailed Bacillus cereus-specific Phage for Use in a Ferromagnetoelastic Biosensor as a Novel Recognition Element

  • Choi, In Young;Park, Joo Hyeon;Gwak, Kyoung Min;Kim, Kwang-Pyo;Oh, Jun-Hyun;Park, Mi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.87-94
    • /
    • 2018
  • This study investigated the feasibility of the lytic, tailed Bacillus cereus-specific phage for use in a ferromagnetoelastic (FME) biosensor as a novel recognition element. The phage was immobilized at various concentrations through either direct adsorption or a combination of 11-mercapto-1-undecanoic acid (11-MUA) and [N-(3-dimethylaminopropyl)-N'-carbodiimide hydrochloride and N-hydroxysuccinimide (EDC/NHS)]. The effects of time and temperature on its lytic properties were investigated through the exposure of B. cereus (4 and 8 logCFU/ml) to the phage (8 logPFU/ml) for various incubation periods at $22^{\circ}C$ and at various temperatures for 30 and 60 min. As the phage concentration increased, both immobilization methods also significantly increased the phage density (p < 0.05). SEM images confirmed that the phage density on the FME platform corresponded to the increased phage concentration. As the combination of 11-MUA and EDC/NHS enhanced the phage density and orientation by up to 4.3-fold, it was selected for use. When various incubation was conducted, no significant differences were observed in the survival rate of B. cereus within 30 min, which was in contrast to the significant decreases observed at 45 and 60 min (p < 0.05). In addition, temperature exerted no significant effects on the survival rate across the entire temperature range. This study demonstrated the feasibility of the lytic, tailed B. cereus-specific phage as a novel recognition element for use in an FME biosensor. Thus, the phage could be placed on the surface of foods for at least 30 min without any significant loss of B. cereus, as a result of the inherent lytic activity of the B. cereus-specific phage as a novel recognition element.

Gaze Recognition System using Random Forests in Vehicular Environment based on Smart-Phone (스마트 폰 기반 차량 환경에서의 랜덤 포레스트를 이용한 시선 인식 시스템)

  • Oh, Byung-Hun;Chung, Kwang-Woo;Hong, Kwang-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.191-197
    • /
    • 2015
  • In this paper, we propose the system which recognize the gaze using Random Forests in vehicular environment based on smart-phone. Proposed system is mainly composed of the following: face detection using Adaboost, face component estimation using Histograms, and gaze recognition based on Random Forests. We detect a driver based on the image information with a smart-phone camera, and the face component of driver is estimated. Next, we extract the feature vectors from the estimated face component and recognize gaze direction using Random Forest recognition algorithm. Also, we collected gaze database including a variety gaze direction in real environments for the experiment. In the experiment result, the face detection rate and the gaze recognition rate showed 82.02% and 84.77% average accuracies, respectively.

A study on the robust speaker recognition algorithm in noise surroundings (주변 잡음 환경에 강한 화자인식 알고리즘 연구)

  • Jung Jong-Soon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.47-54
    • /
    • 2005
  • In the most of speaker recognition system, speaker's characteristics is extracted from acoustic parameter by speech analysis and we make speaker's reference pattern. Parameters used in speaker recognition system are desirable expressing speaker's characteristics fully and being a few difference whenever it is spoken. Therefore we su99est following to solve this problem. This paper is proposed to use strong spectrum characteristic in non-noise circumstance and prosodic information in noise circumstance. In a stage of making code book, we make the number of data we need to combine spectrum characteristic and Prosodic information. We decide acceptance or rejection comparing test pattern and each model distance. As a result, we obtained more improved recognition rate than we use spectrum and prosodic information especially we obtained stational recognition rate in noise circumstance.

  • PDF