• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.031 seconds

A Study on Isolated Word Recognition using Improved Multisection Vector Quantization Recognition System (개선된 MSVQ 인식 시스템을 이용한 단독어 인식에 관한 연구)

  • An, Tae-Ok;Kim, Nam-Joong;Song, Chul;Kim, Soon-Hyeob
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.2
    • /
    • pp.196-205
    • /
    • 1991
  • This paper is a study on the isolated word recognition of speaker independent which proposes to newly improved MSVQ(multisection vector quantization) recognition system which improve the classical MSVQ recognition system. It is a difference that test pattern has on more section than reference pattern in recognition system 146 DDD area names are selected as recognition vocabulary. 12th LPC cepstral coefficients is used as feature parameter. and when codebook is generated, MINSUM and MINMAX are used in finding the centroid. According to the experiment result. it is proved that this method is better than VQ(vector quantization) recognition methods, DTW(dynamic time warping) pattern matching methods and classical MSVQ methods for recognition rate and recognition time.

  • PDF

Development of Speech Recognition System based on User Context Information in Smart Home Environment (스마트 홈 환경에서 사용자 상황정보 기반의 음성 인식 시스템 개발)

  • Kim, Jong-Hun;Sim, Jae-Ho;Song, Chang-Woo;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.328-338
    • /
    • 2008
  • Most speech recognition systems that have a large capacity and high recognition rates are isolated word speech recognition systems. In order to extend the scope of recognition, it is necessary to increase the number of words that are to be searched. However, it shows a problem that exhibits a decrease in the system performance according to the increase in the number of words. This paper defines the context information that affects speech recognition in a ubiquitous environment to solve such a problem and develops user localization method using inertial sensor and RFID. Also, we develop a new speech recognition system that demonstrates better performances than the existing system by establishing a word model domain of a speech recognition system by context information. This system shows operation without decrease of recognition rate in smart home environment.

Factor Affecting on Recognition and Performance of Peripheral Intravenous Infusion Management among Pediatric Nurses (아동간호사의 말초정맥주입 관리에 대한 인지 및 수행 관련 영향요인)

  • Kim, Jeong-Hwa;Jung, In-Sook
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.12
    • /
    • pp.104-114
    • /
    • 2019
  • This study was to find factors affecting on recognition and performance of peripheral intravenous infusion management among pediatric nurses. In analysis using SPSS/Win 24.0, the average scores of recognition and performance were 3.34±0.39, 3.42±0.37 out of 4 each. 'Maintenance and exchange' and 'education' were the lowest each among subdomains. There're significant differences in recognition and performance according to working departments et. al.(p=.039, p<.001), and there's a positive correlation between recognition and performance(r=.591, p<.001). Factors affecting on recognition were performance(β=.57) and working department(β=.22), and on performance were recognition(β=.57) and educated experience(β=.19). And explanation rate were 41.2%, 41.4% each in stepwise multiple regression. In conclusion, recognition and performance were mutually influencing factors. Therefore, it is needed to increase performance by preparing measures to improve recognition of peripheral intravenous infusion management.

Speech Recognition in Car Noise Environments Using Multiple Models Based on a Hybrid Method of Spectral Subtraction and Residual Noise Masking

  • Song, Myung-Gyu;Jung, Hoi-In;Shim, Kab-Jong;Kim, Hyung-Soon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.3E
    • /
    • pp.3-8
    • /
    • 1999
  • In speech recognition for real-world applications, the performance degradation due to the mismatch introduced between training and testing environments should be overcome. In this paper, to reduce this mismatch, we provide a hybrid method of spectral subtraction and residual noise masking. We also employ multiple model approach to obtain improved robustness over various noise environments. In this approach, multiple model sets are made according to several noise masking levels and then a model set appropriate for the estimated noise level is selected automatically in recognition phase. According to speaker independent isolated word recognition experiments in car noise environments, the proposed method using model sets with only two masking levels reduced average word error rate by 60% in comparison with spectral subtraction method.

  • PDF

Dialogue Strategies to Overcome Speech Recognition Errors in Form-Filling Dialogue (양식 채우기 대화에서 음성 인식 오류의 보완을 위한 대화 전략)

  • Kang Sang-Woo;Lee Song-Wook;Seo Jung-Yun
    • Korean Journal of Cognitive Science
    • /
    • v.17 no.2
    • /
    • pp.139-150
    • /
    • 2006
  • Speech recognition errors cause fatal results in a spoken dialogue system. When a system can not determine the speech-act of u utterance due to speech recognition errors, a dialogue system has a difficulty in continuing conversation. In this paper, we propose strategies for sub-dialogue generation by inferring the speech-act of an utterance with patterns of recognition errors on the field of form-filling dialogue. We used the proposed method on a plan-based dialogue model, corrected 27% of incomplete tasks, and acquired overall 89% of task completion rate.

  • PDF

Feature Extraction Based on Speech Attractors in the Reconstructed Phase Space for Automatic Speech Recognition Systems

  • Shekofteh, Yasser;Almasganj, Farshad
    • ETRI Journal
    • /
    • v.35 no.1
    • /
    • pp.100-108
    • /
    • 2013
  • In this paper, a feature extraction (FE) method is proposed that is comparable to the traditional FE methods used in automatic speech recognition systems. Unlike the conventional spectral-based FE methods, the proposed method evaluates the similarities between an embedded speech signal and a set of predefined speech attractor models in the reconstructed phase space (RPS) domain. In the first step, a set of Gaussian mixture models is trained to represent the speech attractors in the RPS. Next, for a new input speech frame, a posterior-probability-based feature vector is evaluated, which represents the similarity between the embedded frame and the learned speech attractors. We conduct experiments for a speech recognition task utilizing a toolkit based on hidden Markov models, over FARSDAT, a well-known Persian speech corpus. Through the proposed FE method, we gain 3.11% absolute phoneme error rate improvement in comparison to the baseline system, which exploits the mel-frequency cepstral coefficient FE method.

Echo Noise Robust HMM Learning Model using Average Estimator LMS Algorithm (평균 예측 LMS 알고리즘을 이용한 반향 잡음에 강인한 HMM 학습 모델)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.10 no.10
    • /
    • pp.277-282
    • /
    • 2012
  • The speech recognition system can not quickly adapt to varied environmental noise factors that degrade the performance of recognition. In this paper, the echo noise robust HMM learning model using average estimator LMS algorithm is proposed. To be able to adapt to the changing echo noise HMM learning model consists of the recognition performance is evaluated. As a results, SNR of speech obtained by removing Changing environment noise is improved as average 3.1dB, recognition rate improved as 3.9%.

A study on Voice Recognition using Model Adaptation HMM for Mobile Environment (모델적응 HMM을 이용한 모바일환경에서의 음성인식에 관한 연구)

  • Ahn, Jong-Young;Kim, Sang-Bum;Kim, Su-Hoon;Hur, Kang-In
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.175-179
    • /
    • 2011
  • In this paper, we propose the MA(Model Adaption) HMM that to use speech enhancement and feature compensation. Normally voice reference data is not consider for real noise data. This method is not to use estimated noise but we use real life environment noise data. And we applied this contaminated data for recognition reference model that suitable for noise environment. MAHMM is combined with surround noise when generating reference patten. We improved voice recognition rate at mobile environment to use MAHMM.

Comparison of the recognition performance of Korean connected digit telephone speech depending on channel compensation methods and feature parameters (채널보상기법 및 특징파라미터에 따른 한국어 연속숫자음 전화음성의 인식성능 비교)

  • Jung Sung Yun;Kim Min Sung;Son Jong Mok;Bae Keun Sung;Kim Sang Hun
    • Proceedings of the KSPS conference
    • /
    • 2002.11a
    • /
    • pp.201-204
    • /
    • 2002
  • As a preliminary study for improving recognition performance of the connected digit telephone speech, we investigate feature parameters as well as channel compensation methods of telephone speech. The CMN and RTCN are examined for telephone channel compensation, and the MFCC, DWFBA, SSC and their delta-features are examined as feature parameters. Recognition experiments with database we collected show that in feature level DWFBA is better than MFCC and for channel compensation RTCN is better than CMN. The DWFBA+Delta_ Mel-SSC feature shows the highest recognition rate.

  • PDF

A study on the speech feature extraction based on the hearing model (청각 모델에 기초한 음성 특징 추출에 관한 연구)

  • 김바울;윤석현;홍광석;박병철
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.4
    • /
    • pp.131-140
    • /
    • 1996
  • In this paper, we propose the method that extracts the speech feature using the hearing model through signal precessing techniques. The proposed method includes following procedure ; normalization of the short-time speech block by its maximum value, multi-resolution analysis using the discrete wavelet transformation and re-synthesize using thediscrete inverse wavelet transformation, differentiation after analysis and synthesis, full wave rectification and integration. In order to verify the performance of the proposed speech feature in the speech recognition task, korean digita recognition experiments were carried out using both the dTW and the VQ-HMM. The results showed that, in case of using dTW, the recognition rates were 99.79% and 90.33% for speaker-dependent and speaker-independent task respectively and, in case of using VQ-HMM, the rate were 96.5% and 81.5% respectively. And it indicates that the proposed speech feature has the potentials to use as a simple and efficient feature for recognition task.

  • PDF