• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.03 seconds

Face Recognition Method Robust to Change in Lighting Condition (조명의 변화에 강건한 얼굴인식)

  • Nam, Kee-Hwan;Han, Jun-Hee;Park, Ho-Sik;Lee, Young-Sik;Jung, Yen-Gil;Ra, Sang-Dong;Bae, Cheol-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.1137-1140
    • /
    • 2005
  • The work presented in this paper describes a Hidden Markov Model(HMM)-based framework for face recognition and face detection. The observation vectors used to characterize the statics of the HMM are obtained using the coefficients of the Karhuman-Loves Transform(KLT). The face recognition method presented in this paper reduces significantly the computational complexity of previous HMM-based face recognition systems, while slightly improving the recognition rate. In addition, the suggested method is more effective than the exiting ones in face extraction in terms of accuracy and others even under complex changes to the surroundings such as lighting.

  • PDF

A Study on the Number Recognition of using Clustering and Thinning Method (클러스터링 방식과 세선화 기법을 이용한 숫자 인식에 관한 연구)

  • 윤진영;이영섭;임재홍
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.4
    • /
    • pp.838-845
    • /
    • 2004
  • After collecting the scanned images of practical identification licenses, it is attained to more accurate recognition of numbers in the identification licenses. As considering the process speed of the preprocess course for recognition, first, it is divided into eight equal parts of the identification license and then, removed the hologram of correspondent noises. It is run parallel template comparison method and teaming method for the number recognition and in order to extract a simple characteristics of the number the clustering method is used. Also, in case of misrecognized number because of external environment by run parallel with the thinning method, similar each numbers is sectioned by unique characteristics. From the results of number recognition, it is confirmed that the recognition rate of numbers is superior to other Studies.

Performance Improvement of EMG-Pattern Recognition Using MFCC-HMM-GMM (MFCC-HMM-GMM을 이용한 근전도(EMG)신호 패턴인식의 성능 개선)

  • Choi, Heung-Ho;Kim, Jung-Ho;Kwon, Jang-Woo
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.5
    • /
    • pp.237-244
    • /
    • 2006
  • This study proposes an approach to the performance improvement of EMG(Electromyogram) pattern recognition. MFCC(Mel-Frequency Cepstral Coefficients)'s approach is molded after the characteristics of the human hearing organ. While it supplies the most typical feature in frequency domain, it should be reorganized to detect the features in EMG signal. And the dynamic aspects of EMG are important for a task, such as a continuous prosthetic control or various time length EMG signal recognition, which have not been successfully mastered by the most approaches. Thus, this paper proposes reorganized MFCC and HMM-GMM, which is adaptable for the dynamic features of the signal. Moreover, it requires an analysis on the most suitable system setting fur EMG pattern recognition. To meet the requirement, this study balanced the recognition-rate against the error-rates produced by the various settings when loaming based on the EMG data for each motion.

Security Algorithm for Vehicle Type Recognition (에지영상의 비율을 이용한 차종 인식 보안 알고리즘)

  • Rhee, Eugene
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.2
    • /
    • pp.77-82
    • /
    • 2017
  • In this paper, a new security algorithm to recognize the type of the vehicle with the vehicle image as a input image is suggested. The vehicle recognition security algorithm is composed of five core parts, such as the input image, background removal, edge areas extraction, pre-processing(binarization), and the vehicle recognition. Therefore, the final recognition rate of the security algorithm for vehicle type recognition can be affected by the function and efficiency of each step. After inputting image into a gray scale image and removing backgrounds, the binarization is performed by extracting only the edge region. After the pre-treatment process for making outlines clear, the type of vehicles is categorized into large vehicles, passenger cars and motorcycles through the ratio of height and width of the vehicle.

A Design and Implementation of Object Recognition based Interactive Game Contents using Kinect Sensor and Unity 3D Engine (키넥트 센서와 유니티 3D 엔진기반의 객체 인식 기법을 적용한 체험형 게임 콘텐츠 설계 및 구현)

  • Jung, Se-hoon;Lee, Ju-hwan;Jo, Kyeong-Ho;Park, Jae-Seong;Sim, Chun Bo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1493-1503
    • /
    • 2018
  • We propose an object recognition system and experiential game contents using Kinect to maximize object recognition rate by utilizing underwater robots. we implement an ice hockey game based on object-aware interactive contents to validate the excellence of the proposed system. The object recognition system, which is a preprocessor module, is composed based on Kinect and OpenCV. Network sockets are utilized for object recognition communications between C/S. The problem of existing research, degradation of object recognition at long distance, is solved by combining the system development method suggested in the study. As a result of the performance evaluation, the underwater robot object recognized all target objects (90.49%) with 80% of accuracy from a 2m distance, revealing 42.46% of F-Measure. From a 2.5m distance, it recognized 82.87% of the target objects with 60.5% of accuracy, showing 34.96% of F-Measure. Finally, it recognized 98.50% of target objects with 59.4% of accuracy from a 3m distance, showing 37.04% of F-measure.

Performance Improvement of Optical Character Recognition for Parts Book Using Pre-processing of Modified VGG Model (변형 VGG 모델의 전처리를 이용한 부품도면 문자 인식 성능 개선)

  • Shin, Hee-Ran;Lee, Sang-Hyeop;Park, Jang-Sik;Song, Jong-Kwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.2
    • /
    • pp.433-438
    • /
    • 2019
  • This paper proposes a method of improving deep learning based numbers and characters recognition performance on parts of drawing through image preprocessing. The proposed character recognition system consists of image preprocessing and 7 layer deep learning model. Mathematical morphological filtering is used as preprocessing to remove the lines and shapes which causes false recognition of numbers and characters on parts drawing. Further.. Further, the used deep learning model is a 7 layer deep learning model instead of VGG-16 model. As a result of the proposed OCR method, the recognition rate of characters is 92.57% and the precision is 92.82%.

Study on Fast-Changing Mixed-Modulation Recognition Based on Neural Network Algorithms

  • Jing, Qingfeng;Wang, Huaxia;Yang, Liming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4664-4681
    • /
    • 2020
  • Modulation recognition (MR) plays a key role in cognitive radar, cognitive radio, and some other civilian and military fields. While existing methods can identify the signal modulation type by extracting the signal characteristics, the quality of feature extraction has a serious impact on the recognition results. In this paper, an end-to-end MR method based on long short-term memory (LSTM) and the gated recurrent unit (GRU) is put forward, which can directly predict the modulation type from a sampled signal. Additionally, the sliding window method is applied to fast-changing mixed-modulation signals for which the signal modulation type changes over time. The recognition accuracy on training datasets in different SNR ranges and the proportion of each modulation method in misclassified samples are analyzed, and it is found to be reasonable to select the evenly-distributed and full range of SNR data as the training data. With the improvement of the SNR, the recognition accuracy increases rapidly. When the length of the training dataset increases, the neural network recognition effect is better. The loss function value of the neural network decreases with the increase of the training dataset length, and then tends to be stable. Moreover, when the fast-changing period is less than 20ms, the error rate is as high as 50%. As the fast-changing period is increased to 30ms, the error rates of the GRU and LSTM neural networks are less than 5%.

The Analysis of Face Recognition Rate according to Distance and Interpolation using PCA in Surveillance System (감시카메라 시스템에서 PCA에 의한 보간법과 거리별 얼굴인식률 분석)

  • Moon, Hae-Min;Kwak, Keun-Chang;Pan, Sung-Bum
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.6
    • /
    • pp.153-160
    • /
    • 2011
  • Recently, the use of security surveillance system including CCTV is increasing due to the increase of terrors and crimes. At the same time, interest of face recognition at a distance using surveillance cameras has been increasing. Accordingly, we analyzed the performance of face recognition according to distance using PCA-based face recognition and interpolation. In this paper, we used Nearest, Bilinear, Bicubic, Lanczos3 interpolations to interpolate face image. As a result, we confirmed that existing interpolation have an few effect on performance of PCA-based face recognition and performance of PCA-based face recognition is improved by including face image according to distance in traning data.

The Impact of Fatigue on Hazard Recognition: An Objective Pilot Study

  • Ibrahim, Abdullahi;Okpala, Ifeanyi;Nnaji, Chukwuma;Namian, Mostafa;Koh, Amanda
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.450-457
    • /
    • 2022
  • The construction industry is demanding, dynamic, and complex making it difficult for workers to recognize hazards. The nature of construction tasks exposes workers to several critical risk factors, such as a high rate of exertion and fatigue. Recent studies suggest that fatigue may impact hazard recognition in the construction industry. However, most studies rely on subjective measures when assessing the relationship between physical fatigue and hazard recognition, limiting such studies' efficacy. Thus, this study examined the relationship between physical fatigue and hazard recognition using a controlled experiment. Worker fatigue levels were captured using physiological data and a subjective exertion scale. The findings confirmed that physical exertion plays a significant role in hazard recognition skills (p < 0.05). This research contributes to theory and practice by providing a process for objectively assessing the influence of physical fatigue on worker safety and providing construction professionals with some critical insight needed to improve workplace safety.

  • PDF

Voice Recognition Performance Improvement using the Convergence of Bayesian method and Selective Speech Feature (베이시안 기법과 선택적 음성특징 추출을 융합한 음성 인식 성능 향상)

  • Hwang, Jae-Chun
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.6
    • /
    • pp.7-11
    • /
    • 2016
  • Voice recognition systems which use a white noise and voice recognition environment are not correct voice recognition with variable voice mixture. Therefore in this paper, we propose a method using the convergence of Bayesian technique and selecting voice for effective voice recognition. we make use of bank frequency response coefficient for selective voice extraction, Using variables observed for the combination of all the possible two observations for this purpose, and has an voice signal noise information to the speech characteristic extraction selectively is obtained by the energy ratio on the output. It provide a noise elimination and recognition rates are improved with combine voice recognition of bayesian methode. The result which we confirmed that the recognition rate of 2.3% is higher than HMM and CHMM methods in vocabulary recognition, respectively.