• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.03 seconds

Noise Robust Emotion Recognition Feature : Frequency Range of Meaningful Signal (음성의 특정 주파수 범위를 이용한 잡음환경에서의 감정인식)

  • Kim Eun-Ho;Hyun Kyung-Hak;Kwak Yoon-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.68-76
    • /
    • 2006
  • The ability to recognize human emotion is one of the hallmarks of human-robot interaction. Hence this paper describes the realization of emotion recognition. For emotion recognition from voice, we propose a new feature called frequency range of meaningful signal. With this feature, we reached average recognition rate of 76% in speaker-dependent. From the experimental results, we confirm the usefulness of the proposed feature. We also define the noise environment and conduct the noise-environment test. In contrast to other features, the proposed feature is robust in a noise-environment.

The Performance Advancement of Test Algorithm for Inner Defects in Semiconductor Packages (반도체 패키지의 내부 결함 검사용 알고리즘 성능 향상)

  • 김재열;윤성운;한재호;김창현;양동조;송경석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.345-350
    • /
    • 2002
  • In this study, researchers classifying the artificial flaws in semiconductor packages are performed by pattern recognition technology. For this purposes, image pattern recognition package including the user made software was developed and total procedure including ultrasonic image acquisition, equalization filtration, binary process, edge detection and classifier design is treated by Backpropagation Neural Network. Specially, it is compared with various weights of Backpropagation Neural Network and it is compared with threshold level of edge detection in preprocessing method fur entrance into Multi-Layer Perceptron(Backpropagation Neural network). Also, the pattern recognition techniques is applied to the classification problem of defects in semiconductor packages as normal, crack, delamination. According to this results, it is possible to acquire the recognition rate of 100% for Backpropagation Neural Network.

  • PDF

Hand Gesture Recognition for Understanding Conducting Action (지휘행동 이해를 위한 손동작 인식)

  • Je, Hong-Mo;Kim, Ji-Man;Kim, Dai-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.263-266
    • /
    • 2007
  • We introduce a vision-based hand gesture recognition fer understanding musical time and patterns without extra special devices. We suggest a simple and reliable vision-based hand gesture recognition having two features First, the motion-direction code is proposed, which is a quantized code for motion directions. Second, the conducting feature point (CFP) where the point of sudden motion changes is also proposed. The proposed hand gesture recognition system extracts the human hand region by segmenting the depth information generated by stereo matching of image sequences. And then, it follows the motion of the center of the gravity(COG) of the extracted hand region and generates the gesture features such as CFP and the direction-code finally, we obtain the current timing pattern of beat and tempo of the playing music. The experimental results on the test data set show that the musical time pattern and tempo recognition rate is over 86.42% for the motion histogram matching, and 79.75% fer the CFP tracking only.

  • PDF

A Study on System of Object Recognition Using Ultrasonic Sensor (초음파 센서를 이용한 물체 인식 시스템에 관한 연구)

  • 조현철;이기성
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.3
    • /
    • pp.74-82
    • /
    • 1998
  • In this study, system of object recognition independent of translation and rotation using ultrasonic sensor and neural network is presented. The object recognition rate is 92.3[%] in spite of changing output neuron space size of SOFM neural network from$4\times4 to10\times10$and iteration from 10 to 50. The experimental results show that the proposed system of object recognition can be applied to the object recognition field of intelligent robot.

  • PDF

Logical Activity Recognition Model for Smart Home Environment

  • Choi, Jung-In;Lim, Sung-Ju;Yong, Hwan-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.9
    • /
    • pp.67-72
    • /
    • 2015
  • Recently, studies that interact with human and things through motion recognition are increasing due to the expansion of IoT(Internet of Things). This paper proposed the system that recognizes the user's logical activity in home environment by attaching some sensors to various objects. We employ Arduino sensors and appreciate the logical activity by using the physical activitymodel that we processed in the previous researches. In this System, we can cognize the activities such as watching TV, listening music, talking, eating, cooking, sleeping and using computer. After we produce experimental data through setting virtual scenario, then the average result of recognition rate was 95% but depending on experiment sensor situation and physical activity errors the consequence could be changed. To provide the recognized results to user, we visualized diverse graphs.

Gesture Recognition Using Higher Correlation Feature Information and PCA

  • Kim, Jong-Min;Lee, Kee-Jun
    • Journal of Integrative Natural Science
    • /
    • v.5 no.2
    • /
    • pp.120-126
    • /
    • 2012
  • This paper describes the algorithm that lowers the dimension, maintains the gesture recognition and significantly reduces the eigenspace configuration time by combining the higher correlation feature information and Principle Component Analysis. Since the suggested method doesn't require a lot of computation than the method using existing geometric information or stereo image, the fact that it is very suitable for building the real-time system has been proved through the experiment. In addition, since the existing point to point method which is a simple distance calculation has many errors, in this paper to improve recognition rate the recognition error could be reduced by using several successive input images as a unit of recognition with K-Nearest Neighbor which is the improved Class to Class method.

A Study on Character Recognition using HMM and the Mason's Theorem

  • Lee Sang-kyu;Hur Jung-youn
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.259-262
    • /
    • 2004
  • In most of the character recognition systems, the method of template matching or statistical method using hidden Markov model is used to extract and recognize feature shapes. In this paper, we used modified chain-code which has 8-directions but 4-codes, and made the chain-code of hand-written character, after that, converted it into transition chain-code by applying to HMM(Hidden Markov Model). The transition chain code by HMM is analyzed as signal flow graph by Mason's theory which is generally used to calculate forward gain at automatic control system. If the specific forward gain and feedback gain is properly set, the forward gain of transition chain-code using Mason's theory can be distinguished depending on each object for recognition. This data of the gain is reorganized as tree structure, hence making it possible to distinguish different hand-written characters. With this method, $91\%$ recognition rate was acquired.

  • PDF

3D face recognition based on facial surface information (얼굴 표면의 형태정보를 이용한 3차원 얼굴인식)

  • Lee, Dong-Joo;Shin, Hyoung-Chul;Sohn, Kwang-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.423-424
    • /
    • 2006
  • This paper describes a 3D face recognition using different devices for 3D faces and input faces which include several different pose. Before the recognition stage, through the EC-SVD, all data have to be preprocessed and normalized. At recognition stage, we propose the multi-point signature method for measuring facial surface information. And we use the root mean square error for matching. From the experiment results, we have 92.5% recognition rate.

  • PDF

A Stroke Matching Method for the Off-line Recognition of Handprinted Hangul (필기체 한글의 오프라인 인식을 위한 획 정합 방법)

  • 김기철;김영식;이성환
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.6
    • /
    • pp.76-85
    • /
    • 1993
  • In this paper, we propose a stroke matching method for the off-line recognition of handprinted Hangul. In this method, the preprocessing steps such as position normalization, contour tracing and thinning are carried out first. Then, after extracting features such as the firection component distribution of contour, the direction component distribution of skeleton, and the distribution of structural feature points, strokes are extracted and matched based on the midpont distribution of the direction and the length of each stroke. In order to reduce the recognition time, a preliminary classification based on the direction component distribution features of the contour is performed. In order to domonstrate the performance of the proposed method, experiments with 520 most frequently used Hangul were performed, and 90.7% of correct recognition rate and 0.46second of recognition time per one character has been obtained. This results reveal that the proposed method can absorb effectively the noise in input character and the variations of stroke slant.

  • PDF

Frontal view face recognition using the hidden markov model and neural networks (은닉 마르코프 모델과 신경회로망을 이용한 정면 얼굴인식)

  • 윤강식;함영국;박래홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.9
    • /
    • pp.97-106
    • /
    • 1996
  • In this paper, we propose a face recognition algorithm using the hidden markov model and neural networks (HMM-NN). In the preprocessing stage, we find edges of a face using the locally adaptive threshold (LAT) scheme and extract features based on generic knowledge of a face, then construct a database with extracted features. In the training stage, we generate HMM parameters for each person by using the forward-backward algorithm. In the recognition stage, we apply probability vlaues calculated by the HMM to subsequent neural networks (NN) as input data. Computer simulation shows that the proposed HMM-NN algorithm gives higher recognition rate compared with conventional face recognition algorithms.

  • PDF