• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.028 seconds

Rejection Study of Mearest Meighbor Classifier for Diagnosis of Rotating Machine Fault (회전기계 고장 진단을 위한 최근접 이웃 분류기의 기각 전략)

  • 최영일;박광호;기창두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.81-84
    • /
    • 2000
  • Rotating machine is used extensively and plays important roles in the industrial field. Therefore when rotating machine get out of order, it is necessary to know reasons then deal with the troubles immediately. So many studies far diagnosis of rotating machine are being done. However by this time most of study has an interest in gaining a high recognition But without considering error $rate^{(1)(2)(3)}$ , it is not desirable enough to apply h the actual application system. If the manager of system receives the result misjudging the condition of rotating machine and takes measures, we would lose heavily. So in order to play the creditable diagnosis, we must consider error rate. T h ~ t is. it must be able to reject the result of misjudgment. This study uses nearest neighbor classifier for diagnosis of rotating $machine^{(4)(8)}$ And the Smith's rejection $method^{(1)}$ used to recognize handwritten charter is done. Consequently creditable diagnosis of rotating machine is proposed.

  • PDF

Pattern recognition of SMD IC using wavelet transform and neural network (웨이브렛 변환과 신경회로망을 이용한 SMD IC 패턴인식)

  • 이명길;이준신
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.7
    • /
    • pp.102-111
    • /
    • 1997
  • In this paper, a patern recognition method of surface mount device(SMD) IC using wavelet transform and neural network is proposed. We chose the feature parameter according to the characteristics of coefficient matrix which is obtained from four level discrete wavelet transform (DWT). These feature parameters are normalized and then used for the input vector of neural network which is capable of adapting the surroundings such as variation of illumination, arrangement of objects and translation. Experimental results show that when the same form of feature pattern, as is used for learning, is put into neural network and gained 100% rate ofrecognition irrespective of SMD IC kinds, location and variation of illumination. In the case of unused feature pattern for learning, the recognition rate is 85.9% under the similar surroundings, where as an average recognition rate is 96.87% for the case of reregulated value of illumination. Proosed method is relatively simple compared with the traditional space domain method in extracting the feature parameter and is also well suited for recognizing the pattern's class, position and existence. It can also shorten the processing tiem better than method extracting feature parameter with the use of discrete cosine transform(DCT) and adapt the surroundings such as variation of illumination, the arrangement and the translation of SMD IC.

  • PDF

Accelerating Levenberg-Marquardt Algorithm using Variable Damping Parameter (가변 감쇠 파라미터를 이용한 Levenberg-Marquardt 알고리즘의 학습 속도 향상)

  • Kwak, Young-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.4
    • /
    • pp.57-63
    • /
    • 2010
  • The damping parameter of Levenberg-Marquardt algorithm switches between error backpropagation and Gauss-Newton learning and affects learning speed. Fixing the damping parameter induces some oscillation of error and decreases learning speed. Therefore, we propose the way of a variable damping parameter with referring to the alternation of error. The proposed method makes the damping parameter increase if error rate is large and makes it decrease if error rate is small. This method so plays the role of momentum that it can improve learning speed. We tested both iris recognition and wine recognition for this paper. We found out that this method improved learning speed in 67% cases on iris recognition and in 78% cases on wine recognition. It was also showed that the oscillation of error by the proposed way was less than those of other algorithms.

Filtering of Filter-Bank Energies for Robust Speech Recognition

  • Jung, Ho-Young
    • ETRI Journal
    • /
    • v.26 no.3
    • /
    • pp.273-276
    • /
    • 2004
  • We propose a novel feature processing technique which can provide a cepstral liftering effect in the log-spectral domain. Cepstral liftering aims at the equalization of variance of cepstral coefficients for the distance-based speech recognizer, and as a result, provides the robustness for additive noise and speaker variability. However, in the popular hidden Markov model based framework, cepstral liftering has no effect in recognition performance. We derive a filtering method in log-spectral domain corresponding to the cepstral liftering. The proposed method performs a high-pass filtering based on the decorrelation of filter-bank energies. We show that in noisy speech recognition, the proposed method reduces the error rate by 52.7% to conventional feature.

  • PDF

Recognition of Hangul Characters with Input Noise (잡음성분을 포함한 한글 문자 인식)

  • Chang, Sun-Young;Cho, Dong-Sub
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.465-469
    • /
    • 1990
  • This thesis proposes a new scheme for the recognition of presegmented Hangul characters. The proposed approach is rather insensitive to noise and variation by applying 2 dimensional convolution to learning patterns. In this thesis, the hangul recognition neural network is implemented in the basis of this scheme and recognition rate is analyzed in boo cases of learning which are learning by binary patterns and learning by binary patterns and convoluted patterns together.

  • PDF

Theoretical recognition thresholding decision of Han-geul character in Rapid Transform region (R-변환 영역에서 한글 문자의 인식한계 결정)

  • Chin, Yong-Ohk
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.936-940
    • /
    • 1987
  • This paper describes the recognition boundary of Hangeul character to interpret variance factor in accordance with various combination. When the recognition algorithm based on comparing the MSE value with the one of the standard pattern in $16{\times}16$ images is performed, we come to a conclusion that we have towe must make a decision MSE value above 34 in order to achive theve recognition rate larger than 90%. Also we understand that varing component coordinates method based on statistical process of each character pattern is preferred.

  • PDF

Development Character Recognition Algorithm in Gerber File for the PCB Assembly Machine (PCB 조립 장비를 위한 거버 문자 인식 알고리즘 개발)

  • 김철한;박태형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.297-297
    • /
    • 2000
  • This paper proposed character recognition method by using DB Matching and Artificial Neural Network at the Gerber files. Gerber files are file for make PCB. But we also use the file to a program of extraction PCB position data. If the Gerber file recognized a character, the extraction PCB position data will be faster and also when the recognition rate is high, it can be possible to automatic extraction. We apply to the construction PCB Gerber file program and Simulation results are presented to verify the usefulness of the method.

  • PDF

Isolated Words Recognition using K-means iteration without Initialization (초기화하지 않은 K-means iteration을 이용한 고립단어 인식)

  • Kim, Jin-Young;Sung, Keong-Mo
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.7-9
    • /
    • 1988
  • K-means iteration method is generally used for creating the templates in speaker-independent isolated-word recognition system. In this paper the initialization method of initial centers is proposed. The concepts are sorting and trace segmentation. All the tokens are sorted and segmented by trace segmentation so that initial centers are decided. The performance of this method is evaluated by isolated-word recognition of Korean digits. The highest recognition rate is 97.6%.

  • PDF

Isolated Word Recognition Using Segment Probability Model (분할확률 모델을 이용한 한국어 고립단어 인식)

  • 김진영;성경모
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.12
    • /
    • pp.1541-1547
    • /
    • 1988
  • In this paper, a new model for isolated word recognition called segment probability model is proposed. The proposed model is composed of two procedures of segmentation and modelling each segment. Therefore the spoken word is devided into arbitrary segments and observation probability in each segments is obtained using vector quantization. The proposed model is compared with pattern matching method and hidden Markov model by recognition experiment. The experimental results show that the proposed model is better than exsisting methods in terms of recognition rate and caculation amounts.

  • PDF

DYNAMICALLY LOCALIZED SELF-ORGANIZING MAP MODEL FOR SPEECH RECOGNITION

  • KyungMin NA
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.1052-1057
    • /
    • 1994
  • Dynamically localized self-organizing map model (DLSMM) is a new speech recognition model based on the well-known self-organizing map algorithm and dynamic programming technique. The DLSMM can efficiently normalize the temporal and spatial characteristics of speech signal at the same time. Especially, the proposed can use contextual information of speech. As experimental results on ten Korean digits recognition task, the DLSMM with contextual information has shown higher recognition rate than predictive neural network models.

  • PDF