• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.028 seconds

Indoor Localization in Wireless Sensor Network using LVQ (LVQ를 이용한 무선 센서 네트워크의 실내 위치 인식)

  • Park, Jin-Woo;Jung, Kyung-Kwon;Eom, Ki-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1295-1302
    • /
    • 2010
  • This paper proposed indoor location recognition method based on RSSI(received signal strength indication) using the LVQ network. In order to verify the effectiveness of the proposed method, we performed experiments, and then compared to the conventional triangularity measurement method. In the experiments, we set up the system to the laboratory, divided the 40 section, and installed 6 nodes as a reference node. We obtained the log-normal path loss model of wireless channels, RSSI converted into the distance. The distance values used as the input of LVQ. To learn the LVQ network, we set the target values as section indices. In the experiments, we determined the optimal number of subclass, and confirmed that the success rate of training phase was 96%, test phase was 91%.

A Study on Malodor Pattern Analysis Using Gas Sensor Array (가스센서 어레이를 이용한 악취 패턴분석에 대한 연구)

  • Choi, Jang-Sik;Jeon, Jin-Young;Byun, Hyung-Gi;Lim, Hea-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.286-291
    • /
    • 2013
  • This paper presents to analyze patterns from single and complex malodors using gas sensor array based on metal oxide semiconductors. The aim of research is to identify and discriminate single malodors such as $NH_3$, $CH_3SH$ and $H_2S$ and their mixtures according to concentration levels. Measurement system for analyzing patterns from malodors is constructed by an array of metal oxide semiconductor sensors which are available commercially together with associate electronics. The patterns from sensory system are analyzed by Principal Component Analysis (PCA) which is simple statistical pattern recognition technique. Throughout the experimental trails, we confirmed the experimental procedure for measurement system such as sensors calibration time and gas flow rate, and discriminated malodors using pattern analysis technique.

Improved Automatic Lipreading by Multiobjective Optimization of Hidden Markov Models (은닉 마르코프 모델의 다목적함수 최적화를 통한 자동 독순의 성능 향상)

  • Lee, Jong-Seok;Park, Cheol-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.15B no.1
    • /
    • pp.53-60
    • /
    • 2008
  • This paper proposes a new multiobjective optimization method for discriminative training of hidden Markov models (HMMs) used as the recognizer for automatic lipreading. While the conventional Baum-Welch algorithm for training HMMs aims at maximizing the probability of the data of a class from the corresponding HMM, we define a new training criterion composed of two minimization objectives and develop a global optimization method of the criterion based on simulated annealing. The result of a speaker-dependent recognition experiment shows that the proposed method improves performance by the relative error reduction rate of about 8% in comparison to the Baum-Welch algorithm.

Fuzzy-Membership Based Writer Identification from Handwritten Devnagari Script

  • Kumar, Rajiv;Ravulakollu, Kiran Kumar;Bhat, Rajesh
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.893-913
    • /
    • 2017
  • The handwriting based person identification systems use their designer's perceived structural properties of handwriting as features. In this paper, we present a system that uses those structural properties as features that graphologists and expert handwriting analyzers use for determining the writer's personality traits and for making other assessments. The advantage of these features is that their definition is based on sound historical knowledge (i.e., the knowledge discovered by graphologists, psychiatrists, forensic experts, and experts of other domains in analyzing the relationships between handwritten stroke characteristics and the phenomena that imbeds individuality in stroke). Hence, each stroke characteristic reflects a personality trait. We have measured the effectiveness of these features on a subset of handwritten Devnagari and Latin script datasets from the Center for Pattern Analysis and Recognition (CPAR-2012), which were written by 100 people where each person wrote three samples of the Devnagari and Latin text that we have designed for our experiments. The experiment yielded 100% correct identification on the training set. However, we observed an 88% and 89% correct identification rate when we experimented with 200 training samples and 100 test samples on handwritten Devnagari and Latin text. By introducing the majority voting based rejection criteria, the identification accuracy increased to 97% on both script sets.

A Point Clouds Fast Thinning Algorithm Based on Sample Point Spatial Neighborhood

  • Wei, Jiaxing;Xu, Maolin;Xiu, Hongling
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.688-698
    • /
    • 2020
  • Point clouds have ability to express the spatial entities, however, the point clouds redundancy always involves some uncertainties in computer recognition and model construction. Therefore, point clouds thinning is an indispensable step in point clouds model reconstruction and other applications. To overcome the shortcomings of complex classification index and long time consuming in existing point clouds thinning algorithms, this paper proposes a point clouds fast thinning algorithm. Specifically, the two-dimensional index is established in plane linear array (x, y) for the scanned point clouds, and the thresholds of adjacent point distance difference and height difference are employed to further delete or retain the selected sample point. Sequentially, the index of sample point is traversed forwardly and backwardly until the process of point clouds thinning is completed. The results suggest that the proposed new algorithm can be applied to different targets when the thresholds are built in advance. Besides, the new method also performs superiority in time consuming, modelling accuracy and feature retention by comparing with octree thinning algorithm.

An empirical study on RFID application to the container terminal gate management system (항만컨테이너터미널 게이트 입/출입 관리에서의 RFID 적용에 관한 실증 연구)

  • Jang, Kyoung-Yeol;Lee, Chung-Hoon;Kim, Jae-Gon;Lim, Seung-Kil;Yoo, Woo-Sik
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.532-539
    • /
    • 2006
  • We conduct an empirical study on RFID application to a real container terminal gate. The objective of this study is three-fold. The first is to design a new gate management process that applies RFID technology. For this purpose, we analyze current gate management process to find opportunities for improvement. The second is to verify the 433 and 900 Mhz RFID technology in terms of the recognition rate of information contained in RFID tag under various conditions such as the speed of vehicle, the position of RFID tag and the tilt of RFID reader. We perform some experimental tests for this verification. Finally, we try to find suitable conditions for the speed of vehicle, the position of RFID tag and the tilt of RFID tag reader based on results of the experimental tests. Those findings are obtained with some ANOVA tests. Additionally, we summarize anticipated issues when applying RFID technology to the gate management process and possible solutions for the issues.

  • PDF

Korean Phoneme Recognition Model with Deep CNN (Deep CNN 기반의 한국어 음소 인식 모델 연구)

  • Hong, Yoon Seok;Ki, Kyung Seo;Gweon, Gahgene
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.398-401
    • /
    • 2018
  • 본 연구에서는 심충 합성곱 신경망(Deep CNN)과 Connectionist Temporal Classification (CTC) 알고리즘을 사용하여 강제정렬 (force-alignment)이 이루어진 코퍼스 없이도 학습이 가능한 음소 인식 모델을 제안한다. 최근 해외에서는 순환 신경망(RNN)과 CTC 알고리즘을 사용한 딥 러닝 기반의 음소 인식 모델이 활발히 연구되고 있다. 하지만 한국어 음소 인식에는 HMM-GMM 이나 인공 신경망과 HMM 을 결합한 하이브리드 시스템이 주로 사용되어 왔으며, 이 방법 은 최근의 해외 연구 사례들보다 성능 개선의 여지가 적고 전문가가 제작한 강제정렬 코퍼스 없이는 학습이 불가능하다는 단점이 있다. 또한 RNN 은 학습 데이터가 많이 필요하고 학습이 까다롭다는 단점이 있어, 코퍼스가 부족하고 기반 연구가 활발하게 이루어지지 않은 한국어의 경우 사용에 제약이 있다. 이에 본 연구에서는 강제정렬 코퍼스를 필요로 하지 않는 CTC 알고리즘을 도입함과 동시에, RNN 에 비해 더 학습 속도가 빠르고 더 적은 데이터로도 학습이 가능한 합성곱 신경망(CNN)을 사용하여 딥 러닝 모델을 구축하여 한국어 음소 인식을 수행하여 보고자 하였다. 이 모델을 통해 본 연구에서는 한국어에 존재하는 49 가지의 음소를 추출하는 세 종류의 음소 인식기를 제작하였으며, 최종적으로 선정된 음소 인식 모델의 PER(phoneme Error Rate)은 9.44 로 나타났다. 선행 연구 사례와 간접적으로 비교하였을 때, 이 결과는 제안하는 모델이 기존 연구 사례와 대등하거나 조금 더 나은 성능을 보인다고 할 수 있다.

A Study on Finger Language Translation System using Machine Learning and Leap Motion (머신러닝과 립 모션을 활용한 지화 번역 시스템 구현에 관한 연구)

  • Son, Da Eun;Go, Hyeong Min;Shin, Haeng yong
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.552-554
    • /
    • 2019
  • Deaf mutism (a hearing-impaired person and speech disorders) communicates using sign language. There are difficulties in communicating by voice. However, sign language can only be limited in communicating with people who know sign language because everyone doesn't use sign language when they communicate. In this paper, a finger language translation system is proposed and implemented as a means for the disabled and the non-disabled to communicate without difficulty. The proposed algorithm recognizes the finger language data by leap motion and self-learns the data using machine learning technology to increase recognition rate. We show performance improvement from the simulation results.

Urinalysis Screening Application based on Smartphone (스마트폰 기반 요검사 스크리닝 애플리케이션)

  • Baek, Seung-Hyeok;Choi, Hong-Rak;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.95-102
    • /
    • 2021
  • The urinalysis, which is universally accessible to the general public, has disadvantages of being less objective using sight and purchasing a separate portable urinalysis machine. However, due to the high penetration rate and performance improvement of smartphone created by the development of mobile communication technology, research on urinalysis services using smartphone has been conducted. In this paper, a new urinalysis screening application based on smartphone was developed by supplementing the limitations of the previously studied urinalysis services. The key technology of the application is urinalysis recognition algorithm and urinalysis pad color determination algorithm through image-processing and contour detection. In order to confirm the performance of the developed application, urinalysis strip was photographed and analyzed from various backgrounds and angles.

A City-Level Boundary Nodes Identification Algorithm Based on Bidirectional Approaching

  • Tao, Zhiyuan;Liu, Fenlin;Liu, Yan;Luo, Xiangyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.2764-2782
    • /
    • 2021
  • Existing city-level boundary nodes identification methods need to locate all IP addresses on the path to differentiate which IP is the boundary node. However, these methods are susceptible to time-delay, the accuracy of location information and other factors, and the resource consumption of locating all IPes is tremendous. To improve the recognition rate and reduce the locating cost, this paper proposes an algorithm for city-level boundary node identification based on bidirectional approaching. Different from the existing methods based on time-delay information and location results, the proposed algorithm uses topological analysis to construct a set of candidate boundary nodes and then identifies the boundary nodes. The proposed algorithm can identify the boundary of the target city network without high-precision location information and dramatically reduces resource consumption compared with the traditional algorithm. Meanwhile, it can label some errors in the existing IP address database. Based on 45,182,326 measurement results from Zhengzhou, Chengdu and Hangzhou in China and New York, Los Angeles and Dallas in the United States, the experimental results show that: The algorithm can accurately identify the city boundary nodes using only 20.33% location resources, and more than 80.29% of the boundary nodes can be mined with a precision of more than 70.73%.