The Journal of Korean Institute of Communications and Information Sciences
/
v.34
no.2C
/
pp.181-185
/
2009
When we classify underwater transient signals with frame-by-frame decision, a database design method for reference feature vectors influences on the system performance such as size of database, computational burden and recognition rate. In this paper the LBG vector quantization algorithm is applied to reduction of the number of feature vectors for each reference signal for efficient classification of underwater transient signals. Experimental results have shown that drastic reduction of the database size can be achieved while maintaining the classification performance by using the LBG vector quantization.
Journal of Institute of Control, Robotics and Systems
/
v.20
no.6
/
pp.612-618
/
2014
A pattern classifier-based approach for recognizing internal states of human participants in interactions is presented along with its experimental results. The approach includes a step for collecting video recordings of human-human interactions or humanrobot interactions and subsequently analyzing the videos based on human coded annotations. The annotation includes social signals directly observed in the video recordings and the internal states of human participants indirectly inferred from those observed social signals. Then, a pattern classifier is trained using the annotation data, and tested. In our experiments on human-robot interaction, 7 video recordings were collected and annotated with 20 social signals and 7 internal states. Several experiments were performed to obtain an 84.83% recall rate for interaction engagement, 93% for concentration intention, and 81% for task comprehension level using a C4.5 based decision tree classifier.
Journal of the Korea Society of Computer and Information
/
v.16
no.6
/
pp.89-97
/
2011
When examining current process of object tracking and search, objects were tracked by extracting them from image that was inputted through fixed single camera and objects were recognized through Zoom function to know detailed information on objects tracked. This study proposed system that expresses information on area that can seek and recognize object tracked as augmented reality by recognizing and seeking object by using multi camera. The result of experiment on proposed system showed that the number of pixels that was included in calculation was remarkably reduced and recognition rate of object was enhanced and time that took to identify information was shortened. Compared with existing methods, this system has advantage of better accuracy that can detect the motion of object and advantage of shortening time that took to detect motion.
Cannibalism plays important roles at the levels of both individual and population. To enhance overall rate of successful survival and reproduction, salamander larvae may have evolved to consume both conspecifics and heterospecifics. Consuming conspecifics could result in decreased inclusive fitness possibly by killing relatives. In several salamander species, discrimination of salamander larval siblings from non-siblings and heterospecifics to avoid such a risk has been reported. To determine whether the Korean salamander larvae consume non-siblings more often than siblings and to analyze prey preferences of the salamander larvae in several different experimental conditions, a series of foraging experiments was conducted in the laboratory. We found that 1) large cannibal larvae preyed on small sibling more often than small non-sibling in a mixed group of sibling and non-sibling, 2) cannibal larvae prefered to consume live, weak, and small larvae to dead, healthy, and large larvae, and 3) cannibal larvae consumed heterospecific tadpoles more often than conspecific nonsibling larvae in a mixed group. In addition, the larval density was positively correlated with the occurrence of spacing behavior, one of the agonistic predator behaviors among salamander larvae.
We developed in the present study molecular imprinted polymers (MIPs), using single templates (pentoxifylline, caffeine and theophylline) and mixed-templates (pentoxifylline-caffeine, pentoxifylline-theophylline and caffeine-theophylline). The MIPs were prepared with methacrylic acid (MAA) as the monomer, ethylene glycol dimetharylate (EGDMA) as the crosslinker and 2,2'-azobis(isobutyronitrile) (AIBN) as the initiator. The obtained polymer particles (particle size after grinding was about 25-35 ${\mu}$m) were packed into a HPLC column (3.9 mm i.d. ${\times}$ 150 mm). The selectivity and chromatographic characteristics of the MIPs were studied using acetonitrile as the mobile phase at a flow rate of 0.8 mL/min. UV detector wavelength was set at 270 nm. Different single template MIPs showed different molecular recognitions to the templates and the structurally analogues, according to the rigidity and steric hindrance of the compounds. Recognition was improved on the mixed-template MIPs as a result of the cooperation or sum effect of the templates, whereas on the pentoxifylline-theophylline imprinted polymer, the highest selectivity and affinity were obtained. Separations of the test compounds on different polymers were also investigated.
Seo, Bo Gil;Choe, Yungeun;Roh, Hyun Chul;Chung, Myung Jin
The Journal of Korea Robotics Society
/
v.9
no.1
/
pp.1-10
/
2014
In recent years, the research of 3D mapping technique in urban environments obtained by mobile robots equipped with multiple sensors for recognizing the robot's surroundings is being studied actively. However, the map generated by simple integration of multiple sensors data only gives spatial information to robots. To get a semantic knowledge to help an autonomous mobile robot from the map, the robot has to convert low-level map representations to higher-level ones containing semantic knowledge of a scene. Given a 3D point cloud of an urban scene, this research proposes a method to recognize the objects effectively using 3D graph model for autonomous mobile robots. The proposed method is decomposed into three steps: sequential range data acquisition, normal vector estimation and incremental graph-based segmentation. This method guarantees the both real-time performance and accuracy of recognizing the objects in real urban environments. Also, it can provide plentiful data for classifying the objects. To evaluate a performance of proposed method, computation time and recognition rate of objects are analyzed. Experimental results show that the proposed method has efficiently in understanding the semantic knowledge of an urban environment.
Phlegm smear testing for acid-fast bacilli (AFB) requires careful examination of tubercle bacilli under a microscope to distinguish between positive and negative findings. The biggest weakness of this method is the visual limitations of the examiners. It is also time-consuming, and mistakes may easily occur. This paper proposes a method of identifying tubercle bacilli that uses a computer instead of a human. To address the challenges of AFB testing, this study designs and investigates image systems that can be used to identify tubercle bacilli. The proposed system uses an electronic microscope to capture digital images that are then processed through feature extraction, image segmentation, image recognition, and neural networks to analyze tubercle bacilli. The proposed system can detect the amount of tubercle bacilli and find their locations. This paper analyzes 184 tubercle bacilli images. Fifty images are used to train the artificial neural network, and the rest are used for testing. The proposed system has a 95.6% successful identification rate, and only takes 0.8 seconds to identify an image.
Huenupan, Fernando;Yoma, Nestor Becerra;Garreton, Claudio;Molina, Carlos
ETRI Journal
/
v.32
no.3
/
pp.395-405
/
2010
A novel multiclassifier system (MCS) strategy is proposed and applied to a text-dependent speaker verification task. The presented scheme optimizes the linear combination of classifiers on an on-line basis. In contrast to ordinary MCS approaches, neither a priori distributions nor pre-tuned parameters are required. The idea is to improve the most accurate classifier by making use of the incremental information provided by the second classifier. The on-line multiclassifier optimization approach is applicable to any pattern recognition problem. The proposed method needs neither a priori distributions nor pre-estimated weights, and does not make use of any consideration about training/testing matching conditions. Results with Yoho database show that the presented approach can lead to reductions in equal error rate as high as 28%, when compared with the most accurate classifier, and 11% against a standard method for the optimization of linear combination of classifiers.
The Von Neumann based architecture of the modern computer has dominated the computing industry for the past 50 years, sparking the digital revolution and propelling us into today's information age. Recent research focus and market trends have shown significant effort toward the advancement and application of artificial intelligence technologies. Although artificial intelligence has been studied for decades since the Turing machine was first introduced, the field has recently emerged into the spotlight thanks to remarkable milestones such as AlexNet-CNN and Alpha-Go, whose neural-network based deep learning methods have achieved a ground-breaking performance superior to existing recognition, classification, and decision algorithms. Unprecedented results in a wide variety of applications (drones, autonomous driving, robots, stock markets, computer vision, voice, and so on) have signaled the beginning of a golden age for artificial intelligence after 40 years of relative dormancy. Algorithmic research continues to progress at a breath-taking pace as evidenced by the rate of new neural networks being announced. However, traditional Von Neumann based architectures have proven to be inadequate in terms of computation power, and inherently inefficient in their processing of vastly parallel computations, which is a characteristic of deep neural networks. Consequently, global conglomerates such as Intel, Huawei, and Google, as well as large domestic corporations and fabless companies are developing dedicated semiconductor chips customized for artificial intelligence computations. The AI Processor Research Laboratory at ETRI is focusing on the research and development of super low-power AI processor chips. In this article, we present the current trends in computation platform, parallel processing, AI processor, and super-threaded AI processor research being conducted at ETRI.
Journal of Institute of Control, Robotics and Systems
/
v.14
no.3
/
pp.242-247
/
2008
As an absolute positioning system, iGS is designed based on ultrasonic signals whose speed can be formulated clearly in terms of time and room temperature, which is utilized for a mobile robot localization. The iGS is composed of an RFID receiver and an ultra-sonic transmitter, where an RFID is designated to synchronize the transmitter and receiver of the ultrasonic signal. The traveling time of the ultrasonic signal has been used to calculate the distance between the iGS system and a beacon which is located at a pre-determined location. This paper suggests an effective operation method of iGS to estimate position of the mobile robot working in unstructured environment. To expand recognition range and to improve accuracy of the system, two strategies are proposed: utilization of beacons belonging to neighboring blocks and removal of the environment-reflected ultrasonic signals. As the results, the ubiquitous localization system based on iGS as a pseudo-satellite system has been developed successfully with a low cost, a high update rate, and relatively high precision.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.