• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.03 seconds

Development of vision system for the character recognition of the billet image (빌렛영상에 포함된 문자인식을 위한 비전시스템 개발)

  • Park, Sang-Gug
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.1
    • /
    • pp.22-29
    • /
    • 2008
  • This paper describes the developed results of vision system for the recognition of material management characters, which was included in the billet image. The material management characters, which was marked at the surface of billet, should be recognized before billet moves to the next process. Our vision system for the character recognition includes that CCD camera system which acquire billet image, optical transmission system which transmit captured image to the long distance, input and output system for the interface with existing system and software for the character recognition. We have installed our vision system at the wire rod line of steel & iron plant and tested. Also, we have performed inspection of durability, reliability and recognition rate. Through the testing, we have confirmed that our system have high recognition rate, 98.6%.

  • PDF

Design and Implementation of Vision Box Based on Embedded Platform (Embedded Platform 기반 Vision Box 설계 및 구현)

  • Kim, Pan-Kyu;Lee, Jong-Hyeok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.191-197
    • /
    • 2007
  • Vision system is an object recognition system analyzing image information captured through camera. Vision system can be applied to various fields, and vehicle recognition is ole of them. There have been many proposals about algorithm of vehicle recognition. But have complex calculation processing. So they need long processing time and sometimes they make problems. In this research we suggested vehicle type recognition system using vision bpx based on embedded platform. As a result of testing this system achieves 100% rate of recognition at the optimal condition. But when condition is changed by lighting, noise and angle, rate of recognition is decreased as pattern score is lowered and recognition speed is slowed.

A Comparative Study on OCR using Super-Resolution for Small Fonts

  • Cho, Wooyeong;Kwon, Juwon;Kwon, Soonchu;Yoo, Jisang
    • International journal of advanced smart convergence
    • /
    • v.8 no.3
    • /
    • pp.95-101
    • /
    • 2019
  • Recently, there have been many issues related to text recognition using Tesseract. One of these issues is that the text recognition accuracy is significantly lower for smaller fonts. Tesseract extracts text by creating an outline with direction in the image. By searching the Tesseract database, template matching with characters with similar feature points is used to select the character with the lowest error. Because of the poor text extraction, the recognition accuracy is lowerd. In this paper, we compared text recognition accuracy after applying various super-resolution methods to smaller text images and experimented with how the recognition accuracy varies for various image size. In order to recognize small Korean text images, we have used super-resolution algorithms based on deep learning models such as SRCNN, ESRCNN, DSRCNN, and DCSCN. The dataset for training and testing consisted of Korean-based scanned images. The images was resized from 0.5 times to 0.8 times with 12pt font size. The experiment was performed on x0.5 resized images, and the experimental result showed that DCSCN super-resolution is the most efficient method to reduce precision error rate by 7.8%, and reduce the recall error rate by 8.4%. The experimental results have demonstrated that the accuracy of text recognition for smaller Korean fonts can be improved by adding super-resolution methods to the OCR preprocessing module.

FIGURE ALPHABET HYPOTHESIS INSPIRED NEURAL NETWORK RECOGNITION MODEL

  • Ohira, Ryoji;Saiki, Kenji;Nagao, Tomoharu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.547-550
    • /
    • 2009
  • The object recognition mechanism of human being is not well understood yet. On research of animal experiment using an ape, however, neurons that respond to simple shape (e.g. circle, triangle, square and so on) were found. And Hypothesis has been set up as human being may recognize object as combination of such simple shapes. That mechanism is called Figure Alphabet Hypothesis, and those simple shapes are called Figure Alphabet. As one way to research object recognition algorithm, we focused attention to this Figure Alphabet Hypothesis. Getting idea from it, we proposed the feature extraction algorithm for object recognition. In this paper, we described recognition of binarized images of multifont alphabet characters by the recognition model which combined three-layered neural network in the feature extraction algorithm. First of all, we calculated the difference between the learning image data set and the template by the feature extraction algorithm. The computed finite difference is a feature quantity of the feature extraction algorithm. We had it input the feature quantity to the neural network model and learn by backpropagation (BP method). We had the recognition model recognize the unknown image data set and found the correct answer rate. To estimate the performance of the contriving recognition model, we had the unknown image data set recognized by a conventional neural network. As a result, the contriving recognition model showed a higher correct answer rate than a conventional neural network model. Therefore the validity of the contriving recognition model could be proved. We'll plan the research a recognition of natural image by the contriving recognition model in the future.

  • PDF

A Study on Word Selection Method and Device Improvement for Improving Speech Recognition Rate of Speech-Language-impaired in Severe Noise Environment (심한 소음환경에서 언어장애인 음성 인식률 향상을 위한 단어선정 방법 및 장치 개선에 관한 연구)

  • Yang, Ki-Woong;Lee, Hyung-keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.5
    • /
    • pp.555-567
    • /
    • 2019
  • Speech recognition rate is lowered even in a noisy environment, and it is difficult for a person with a speech disability or an inconvenient language to use it in a social life. In addition to improving the inconvenience of using the language, 280 words were selected using the word selection method which was improved when the word was selected considering the pronunciation characteristics of the language impaired. The MEMS development device used in the experiment was made considering material, lead wire type, length and direction. We improved the speech recognition rate by using the developed word selection method and the MEMS device developed to improve the speech recognition rate due to incorrect pronunciation and severe noise. The new method of selecting words and the mems device were improved and the results were included.

A Study on Face Recognition on an UMPC (UMPC 환경에서의 얼굴인식 연구)

  • Nam, Gi-Pyo;Kang, Byung-Jun;Jeong, Dae-Sik;Park, Kang-Ryoung
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.831-832
    • /
    • 2008
  • This paper proposes the experimental results and analysis of face recognition on an conventional UMPC(Ultra Mobile Personal Computer). With face images acquired by the embedded camera of UMPC, we detected the facial region by using Adaboost face detector. The detected image was normalized into a $32{\times}32$ pixel sized image for face recognition. We performed face recognition based on PCA (Principal Component Analysis). As experimental results, the TER (Total Error Rate) of face recognition was 19.77%.

  • PDF

A study on the Recognition of Korean Proverb Using Neural Network and Markov Model (신경회로망과 Markov 모델을 이용한 한국어 속담 인식에 관한 연구)

  • 홍기원;김선일;이행세
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.12
    • /
    • pp.1663-1669
    • /
    • 1995
  • This paper is a study on the recognition of Korean proverb using neural network and Markov model. The neural network uses, at the stage of training neurons, features such as the rate of zero crossing, short-term energy and PLP-Cepstrum, covering a time of 300ms long. Markov models were generated by the recognized phoneme strings. The recognition of words and proverbs using Markov models have been carried out. Experimental results show that phoneme and word recognition rates are 81. 2%, 94.0% respectively for Korean proverb recognition experiments.

  • PDF

Mongolian Car Plate Recognition using Neural Network

  • Ragchaabazar, Bud;Kim, SooHyung;Na, In Seop
    • Smart Media Journal
    • /
    • v.2 no.4
    • /
    • pp.20-26
    • /
    • 2013
  • This paper presents an approach to Mongolian car plate recognition using artificial neural network. Our proposed method consists of two steps: detection and recognition. In detection step, we implement Flood fill algorithm. In recognition step we proceed to segment the plate for each Cyrillic character, and use an Artificial Neural Network (ANN) machine - learning algorithm to recognize the character. We have learned the theory of ANN and implemented it without using any library. A total of 150 vehicles images obtained from community entrance gates have been tested. The recognition algorithm shows an accuracy rate of 89.75%.

  • PDF

Feature Extraction and Statistical Pattern Recognition for Image Data using Wavelet Decomposition

  • Kim, Min-Soo;Baek, Jang-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.3
    • /
    • pp.831-842
    • /
    • 1999
  • We propose a wavelet decomposition feature extraction method for the hand-written character recognition. Comparing the recognition rates of which methods with original image features and with selected features by the wavelet decomposition we study the characteristics of the proposed method. LDA(Linear Discriminant Analysis) QDA(Quadratic Discriminant Analysis) RDA(Regularized Discriminant Analysis) and NN(Neural network) are used for the calculation of recognition rates. 6000 hand-written numerals from CENPARMI at Concordia University are used for the experiment. We found that the set of significantly selected wavelet decomposed features generates higher recognition rate than the original image features.

  • PDF

Adaptive Korean Continuous Speech Recognizer to Speech Rate (발화속도 적응적인 한국어 연속음 인식기)

  • Kim, Jae-Beom;Park, Chan-Kyu;Han, Mi-Sung;Lee, Jung-Hyun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.6
    • /
    • pp.1531-1540
    • /
    • 1997
  • In this paper, we presents automatic Korean continuous speech recognizer which is improved by the speech rate estimation and the compensation methods. Automatic continuous speech recognition is significantly more difficult than isolated word recognition because of coarticulatory effects and variations in speech rate. In order to recognize continuous speech, modeling methods of coarticulatory effects and variations in speech rate are needed. In this paper, the speech rate is measured by change of format, and the compensation is peformed by extracting relatively many feature vectors in fast speech. Coarticulatory effects are modeled by defining 514 Korean diphone set, and ETRI's 445 word DB is used for training speech material. With combining above methods, we implement automatic Korean continuous speech recognizer, which shows improved recognition rate, based on DHMM(Discrete Hidden Markov Model).

  • PDF