• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.034 seconds

Emotion Recognition using Pitch Parameters of Speech (음성의 피치 파라메터를 사용한 감정 인식)

  • Lee, Guehyun;Kim, Weon-Goo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.272-278
    • /
    • 2015
  • This paper studied various parameter extraction methods using pitch information of speech for the development of the emotion recognition system. For this purpose, pitch parameters were extracted from korean speech database containing various emotions using stochastical information and numerical analysis techniques. GMM based emotion recognition system were used to compare the performance of pitch parameters. Sequential feature selection method were used to select the parameters showing the best emotion recognition performance. Experimental results of recognizing four emotions showed 63.5% recognition rate using the combination of 15 parameters out of 56 pitch parameters. Experimental results of detecting the presence of emotion showed 80.3% recognition rate using the combination of 14 parameters.

The Effect of FIR Filtering and Spectral Tilt on Speech Recognition with MFCC (FIR 필터링과 스펙트럼 기울이기가 MFCC를 사용하는 음성인식에 미치는 효과)

  • Lee, Chang-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.4
    • /
    • pp.363-371
    • /
    • 2010
  • In an effort to enhance the quality of feature vector classification and thereby reduce the recognition error rate for the speaker-independent speech recognition, we study the effect of spectral tilt on the Fourier magnitude spectrum en route to the extraction of MFCC. The effect of FIR filtering on the speech signal on the speech recognition is also investigated in parallel. Evaluation of the proposed methods are performed by two independent ways of the Fisher discriminant objective function and speech recognition test by hidden Markov model with fuzzy vector quantization. From the experiments, the recognition error rate is found to show about 10% relative improvements over the conventional method by an appropriate choice of the tilt factor.

A Face Recognition using the Hidden Markov Model and Karhuman Loevs Transform (Hidden Markov Model과 Karhuman Loevs Transform를 이용한 얼굴인식)

  • Kim, Do-Hyun;Hwang, Suen-Ki;Kang, Yong-Seok;Kim, Tae-Woo;Kim, Moon-Hwan;Bae, Cheol-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.1
    • /
    • pp.3-8
    • /
    • 2011
  • The work presented in this paper describes a Hidden Markov Model(HMM)-based framework for face recognition and face detection. The observation vectors used to characterize the statics of the HMM are obtained using the coefficients of the Karhuman-Loves Transform(KLT). The face recognition method presented in this paper reduces significantly the computational complexity of previous HMM-based face recognition systems, while slightly improving the recognition rate. In addition, the suggested method is more effective than the exiting ones in face extraction in terms of accuracy and others even under complex changes to the surroundings such as lighting.

Fast computation of Observation Probability for Speaker-Independent Real-Time Speech Recognition (실시간 화자독립 음성인식을 위한 고속 확률계산)

  • Park Dong-Chul;Ahn Ju-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9C
    • /
    • pp.907-912
    • /
    • 2005
  • An efficient method for calculation of observation probability in CDHMM(Continous Density Hidden Markov Model) is proposed in this paper. the proposed algorithm, called FCOP(Fast Computation of Observation Probability), approximate obsewation probabilities in CDHMM by eliminating insignificant PDFs(Probability Density Functions) and reduces the computational load. When applied to a speech recognition system, the proposed FCOP algorithm can reduce the instruction cycles by $20\%-30\%$ and can also increase the recognition speed about $30\%$ while minimizing the loss in its recognition rate. When implemented on a practical cellular phone, the FCOP algorithm can increase its recognition speed about $30\%$ while suffering $0.2\%$ loss in recognition rate.

Hybrid Neural Classifier Combined with H-ART2 and F-LVQ for Face Recognition

  • Kim, Do-Hyeon;Cha, Eui-Young;Kim, Kwang-Baek
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1287-1292
    • /
    • 2005
  • This paper presents an effective pattern classification model by designing an artificial neural network based pattern classifiers for face recognition. First, a RGB image inputted from a frame grabber is converted into a HSV image which is similar to the human beings' vision system. Then, the coarse facial region is extracted using the hue(H) and saturation(S) components except intensity(V) component which is sensitive to the environmental illumination. Next, the fine facial region extraction process is performed by matching with the edge and gray based templates. To make a light-invariant and qualified facial image, histogram equalization and intensity compensation processing using illumination plane are performed. The finally extracted and enhanced facial images are used for training the pattern classification models. The proposed H-ART2 model which has the hierarchical ART2 layers and F-LVQ model which is optimized by fuzzy membership make it possible to classify facial patterns by optimizing relations of clusters and searching clustered reference patterns effectively. Experimental results show that the proposed face recognition system is as good as the SVM model which is famous for face recognition field in recognition rate and even better in classification speed. Moreover high recognition rate could be acquired by combining the proposed neural classification models.

  • PDF

Organ Recognition in Ultrasound images Using Log Power Spectrum (로그 전력 스펙트럼을 이용한 초음파 영상에서의 장기인식)

  • 박수진;손재곤;김남철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9C
    • /
    • pp.876-883
    • /
    • 2003
  • In this paper, we propose an algorithm for organ recognition in ultrasound images using log power spectrum. The main procedure of the algorithm consists of feature extraction and feature classification. In the feature extraction, as a translation invariant feature, log power spectrum is used for extracting the information on echo of the organs tissue from a preprocessed input image. In the feature classification, Mahalanobis distance is used as a measure of the similarity between the feature of an input image and the representative feature of each class. Experimental results for real ultrasound images show that the proposed algorithm yields the improvement of maximum 30% recognition rate than the recognition algorithm using power spectrum and Euclidean distance, and results in better recognition rate of 10-40% than the recognition algorithm using weighted quefrency complex cepstrum.

Korean License Plate Recognition Using CNN (CNN 기반 한국 번호판 인식)

  • Hieu, Tang Quang;Yeon, Seungho;Kim, Jaemin
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1337-1342
    • /
    • 2019
  • The Automatic Korean license plate recognition (AKLPR) is used in many fields. For many applications, high recognition rate and fast processing speed of ALPR are important. Recent advances in deep learning have improved the accuracy and speed of object detection and recognition, and CNN (Convolutional Neural Network) has been applied to ALPR. The ALPR is divided into the stage of detecting the LP region and the stage of detecting and recognizing the character in the LP region, and each step is implemented with separate CNN. In this paper, we propose a single stage CNN architecture to recognize license plate characters at high speed while keeping high recognition rate.

A New Robust Signal Recognition Approach Based on Holder Cloud Features under Varying SNR Environment

  • Li, Jingchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.4934-4949
    • /
    • 2015
  • The unstable characteristic values of communication signals along with the varying SNR (Signal Noise Ratio) environment make it difficult to identify the modulations of signals. Most of relevant literature revolves around signal recognition under stable SNR, and not applicable for signal recognition at varying SNR. To solve the problem, this research developed a novel communication signal recognition algorithm based on Holder coefficient and cloud theory. In this algorithm, the two-dimensional (2D) Holder coefficient characteristics of communication signals were firstly calculated, and then according to the distribution characteristics of Holder coefficient under varying SNR environment, the digital characteristics of cloud model such as expectation, entropy, and hyper entropy are calculated to constitute the three-dimensional (3D) digital cloud characteristics of Holder coefficient value, which aims to improve the recognition rate of the communication signals. Compared with traditional algorithms, the developed algorithm can describe the signals' features more accurately under varying SNR environment. The results from the numerical simulation show that the developed 3D feature extraction algorithm based on Holder coefficient cloud features performs better anti-noise ability, and the classifier based on interval gray relation theory can achieve a recognition rate up to 84.0%, even when the SNR varies from -17dB to -12dB.

Recognition of Radar Emitter Signals Based on SVD and AF Main Ridge Slice

  • Guo, Qiang;Nan, Pulong;Zhang, Xiaoyu;Zhao, Yuning;Wan, Jian
    • Journal of Communications and Networks
    • /
    • v.17 no.5
    • /
    • pp.491-498
    • /
    • 2015
  • Recognition of radar emitter signals is one of core elements in radar reconnaissance systems. A novel method based on singular value decomposition (SVD) and the main ridge slice of ambiguity function (AF) is presented for attaining a higher correct recognition rate of radar emitter signals in case of low signal-to-noise ratio. This method calculates the AF of the sorted signal and ascertains the main ridge slice envelope. To improve the recognition performance, SVD is employed to eliminate the influence of noise on the main ridge slice envelope. The rotation angle and symmetric Holder coefficients of the main ridge slice envelope are extracted as the elements of the feature vector. And kernel fuzzy c-means clustering is adopted to analyze the feature vector and classify different types of radar signals. Simulation results indicate that the feature vector extracted by the proposed method has satisfactory aggregation within class, separability between classes, and stability. Compared to existing methods, the proposed feature recognition method can achieve a higher correct recognition rate.

The Recognition of Korean Syllables using Parameter Based on Principal Component Analysis (PCA 기반 파라메타를 이용한 숫자음 인식)

  • 박경훈;표창수;김창근;허강인
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.181-184
    • /
    • 2000
  • The new method of feature extraction is proposed, considering the statistic feature of human voice, unlike the conventional methods of voice extraction. PCA(principal Component Analysis) is applied to this new method. PCA removes the repeating of data after finding the axis direction which has the greatest variance in input dimension. Then the new method is applied to real voice recognition to assess performance. When results of the number recognition in this paper and the conventional Mel-Cepstrum of voice feature parameter are compared, there is 0.5% difference of recognition rate. Better recognition rate is expected than word or sentence recognition in that less convergence time than the conventional method in extracting voice feature. Also, better recognition tate is expected when the optimum vector is used by statistic feature of data.

  • PDF