• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.036 seconds

A Study on the Phoneme Recognition in the Restricted Continuously Spoken Korean (제한된 한국어 연속음성에 나타난 음소인식에 관한 연구)

  • 심성룡;김선일;이행세
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.12
    • /
    • pp.1635-1643
    • /
    • 1995
  • This paper proposes an algorithm for machine recognition of phonemes in continuously spoken Korean. The proposed algorithm is a static strategy neural network. The algorithm uses, at the stage of training neurons, features such as the rate of zero crossing, short-term energy, and either PARCOR or auditory-like perceptual linear prediction(PLP) but not both, covering a time of 171ms long. Numerical results show that the algorithm with PLP achieves approximately the frame-based phoneme recognition rate of 99% for small vocabulary recognition experiments. Based on this it is concluded that the proposed algorithm with PLP analysis is effective in phoneme recognition.

  • PDF

Flexible Jet Point Setting In Gabor Filter Based Face Recognition (가보필터기반 얼굴인식에서의 유동적 Jet Point Setting)

  • 신하송;김병우;이정안;김민기
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2032-2035
    • /
    • 2003
  • This paper focused on the possibility of face recognition using Flexible let Point Setting method in Gabor Filter Based Face Recognition. Gabor Filter is very sensible to the Texture variation. Therefore, any little change in the face expression or rotation of posture make recognition rate down significantly. A suggested solution for this problem is the Flexible Jet Point Setting. A significant effect of this method is that the number of Jet Point has been reduced from over 150 to under 30 even though the change of recognition rate between two methods is neglectable, Furthermore a set of feature values which results from a set of Gabor filtering became insensible to face variation such as expression, rotation, and light effect. Retinex Algorithm which has been developed by NASA are used as pre-processing.

  • PDF

A Novel Recognition Algorithm Based on Holder Coefficient Theory and Interval Gray Relation Classifier

  • Li, Jingchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4573-4584
    • /
    • 2015
  • The traditional feature extraction algorithms for recognition of communication signals can hardly realize the balance between computational complexity and signals' interclass gathered degrees. They can hardly achieve high recognition rate at low SNR conditions. To solve this problem, a novel feature extraction algorithm based on Holder coefficient was proposed, which has the advantages of low computational complexity and good interclass gathered degree even at low SNR conditions. In this research, the selection methods of parameters and distribution properties of the extracted features regarding Holder coefficient theory were firstly explored, and then interval gray relation algorithm with improved adaptive weight was adopted to verify the effectiveness of the extracted features. Compared with traditional algorithms, the proposed algorithm can more accurately recognize signals at low SNR conditions. Simulation results show that Holder coefficient based features are stable and have good interclass gathered degree, and interval gray relation classifier with adaptive weight can achieve the recognition rate up to 87% even at the SNR of -5dB.

Performance Improvement of Microphone Array Speech Recognition Using Features Weighted Mahalanobis Distance (가중특징 Mahalanobis거리를 이용한 마이크 어레이 음석인식의 성능향상)

  • Nguyen, Dinh Cuong;Chung, Hyun-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.1E
    • /
    • pp.45-53
    • /
    • 2010
  • In this paper, we present the use of the Features Weighted Mahalanobis Distance (FWMD) in improving the performance of Likelihood Maximizing Beamforming (Limabeam) algorithm in speech recognition for microphone array. The proposed approach is based on the replacement of the traditional distance measure in a Gaussian classifier with adding weight for different features in the Mahalanobis distance according to their distances after the variance normalization. By using Features Weighted Mahalanobis Distance for Limabeam algorithm (FWMD-Limabeam), we obtained correct word recognition rate of 90.26% for calibrate Limabeam and 87.23% for unsupervised Limabeam, resulting in a higher rate of 3% and 6% respectively than those produced by the original Limabearn. By implementing a HM-Net speech recognition strategy alternatively, we could save memory and reduce computation complexity.

Deep Learning Machine Vision System with High Object Recognition Rate using Multiple-Exposure Image Sensing Method

  • Park, Min-Jun;Kim, Hyeon-June
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.76-81
    • /
    • 2021
  • In this study, we propose a machine vision system with a high object recognition rate. By utilizing a multiple-exposure image sensing technique, the proposed deep learning-based machine vision system can cover a wide light intensity range without further learning processes on the various light intensity range. If the proposed machine vision system fails to recognize object features, the system operates in a multiple-exposure sensing mode and detects the target object that is blocked in the near dark or bright region. Furthermore, short- and long-exposure images from the multiple-exposure sensing mode are synthesized to obtain accurate object feature information. That results in the generation of a wide dynamic range of image information. Even with the object recognition resources for the deep learning process with a light intensity range of only 23 dB, the prototype machine vision system with the multiple-exposure imaging method demonstrated an object recognition performance with a light intensity range of up to 96 dB.

A Method on the Learning Speed Improvement of the Online Error Backpropagation Algorithm in Speech Processing (음성처리에서 온라인 오류역전파 알고리즘의 학습속도 향상방법)

  • 이태승;이백영;황병원
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.430-437
    • /
    • 2002
  • Having a variety of good characteristics against other pattern recognition techniques, the multilayer perceptron (MLP) has been widely used in speech recognition and speaker recognition. But, it is known that the error backpropagation (EBP) algorithm that MLP uses in learning has the defect that requires restricts long learning time, and it restricts severely the applications like speaker recognition and speaker adaptation requiring real time processing. Because the learning data for pattern recognition contain high redundancy, in order to increase the learning speed it is very effective to use the online-based learning methods, which update the weight vector of the MLP by the pattern. A typical online EBP algorithm applies the fixed learning rate for each update of the weight vector. Though a large amount of speedup with the online EBP can be obtained by choosing the appropriate fixed rate, firing the rate leads to the problem that the algorithm cannot respond effectively to different learning phases as the phases change and the number of patterns contributing to learning decreases. To solve this problem, this paper proposes a Changing rate and Omitting patterns in Instant Learning (COIL) method to apply the variable rate and the only patterns necessary to the learning phase when the phases come to change. In this paper, experimentations are conducted for speaker verification and speech recognition, and results are presented to verify the performance of the COIL.

A Modified Error Back Propagation Algorithm Adding Neurons to Hidden Layer (은닉층 뉴우런 추가에 의한 역전파 학습 알고리즘)

  • 백준호;김유신;손경식
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.4
    • /
    • pp.58-65
    • /
    • 1992
  • In this paper new back propagation algorithm which adds neurons to hidden layer is proposed. this proposed algorithm is applied to the pattern recognition of written number coupled with back propagation algorithm through omitting redundant learning. Learning rate and recognition rate of the proposed algorithm are compared with those of the conventional back propagation algorithm and the back propagation through omitting redundant learning. The learning rate of proposed algorithm is 4 times as fast as the conventional back propagation algorithm and 2 times as fast as the back propagation through omitting redundant learning. The recognition rate is 96.2% in case of the conventional back propagation algorithm, 96.5% in case of the back propagation through omitting redundant learning and 97.4% in the proposed algorithm.

  • PDF

The Classification of Roughness fir Machined Surface Image using Neural Network (신경회로망을 이용한 가공면 영상의 거칠기 분류)

  • 사승윤
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.2
    • /
    • pp.144-150
    • /
    • 2000
  • Surface roughness is one of the most important parameters to estimate quality of products. As this reason so many studies were car-ried out through various attempts that were contact or non-contact using computer vision. Even through these efforts there were few good results in this research., however texture analysis making a important role to solve these problems in various fields including universe aviation living thing and fibers. In this study feature value of co-occurrence matrix was calculated by statistic method and roughness value of worked surface was classified, of it. Experiment was carried out using input vector of neural network with characteristic value of texture calculated from worked surface image. It's found that recognition rate of 74% was obtained when adapting texture features. In order to enhance recogni-tion rate combination type in characteristics value of texture was changed into input vector. As a result high recognition rate of 92.6% was obtained through these processes.

  • PDF

Parallel, self-organizing, hierarchical neural networks for handwritten digit recognition (필기체 숫자인식을 위한 병렬 자구성 계층 신경회로망)

  • 방극준;조남신;강창언;홍대식
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.7
    • /
    • pp.173-182
    • /
    • 1996
  • In this paper, we propose the parallel, self-organizing, hierarchical neural netowrks as a handwritten digit recognition system. This system can absorb the various shape variations of handwritten digits by using the different methods of extracting the features in each stage neural network (SNN) of the PSHNN, and can reduce training time by using the single layer neural network as the SNN, and can obtain high rate of correct recognition by using the certainty area in all the output nodes individually. experiments have been performed with NIST database. In which we use 21, 315 digits (10, 625 digits for training and 10,663 digits for testing). The results show that the correct rate is 97.48% the error rate is 1.72% and the reject rate is 0.78%.

  • PDF

A Method of Optimal Sensor Decision for Odor Recognition (냄새 인식을 위한 최적의 센서 결정 방법)

  • Roh, Yong-Wan;Kim, Dong-Ku;Kwon, Hyeong-Oh;Hong, Kwang-Seok
    • The KIPS Transactions:PartB
    • /
    • v.17B no.1
    • /
    • pp.9-14
    • /
    • 2010
  • In this paper, we propose method of correlation coefficients between sensors by statistical analysis that selects optimal sensors in odor recognition system of selective multi-sensors. The proposed sensor decision method obtains odor data from Metal Oxide Semiconductor(MOS) sensor array and then, we decide optimal sensors based on correlation of obtained odors. First of all, we select total number of 16 sensors eliminated sensor of low response and low reaction rate response among similar sensors. We make up DB using 16 sensors from input odor and we select sensor of low correlation after calculated correlation coefficient of each sensor. Selected sensors eliminate similar sensors' response therefore proposed method are able to decide optimal sensors. We applied to floral scent recognition for performance evaluation of proposed sensors decision method. As a result, application of proposed method with floral scent recognition using correlation coefficient obtained recognition rate of 95.67% case of using 16 sensors while applied floral scent recognition system of proposed sensor decision method confirmed recognition rate of 94.67% using six sensors and 96% using only 8 sensors.