• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.025 seconds

PC-based Hand-Geometry Verification System

  • Kim Young-Tak;Kim Soo-Jong;Lee Chang-Gyu;Kim Gwan-Hyung;Kang Sung-In;Lee Jae-Hyun;Tack Han-Ho;Lee Sang-Bae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.247-254
    • /
    • 2006
  • Biometrics are getting more and more attention in recent years for security and other concerns. So far, only fingerprint recognition has seen limited success for on-line security check, since other biometrics verification and identification systems require more complicated and expensive acquisition interfaces and recognition processes. Hand-Geometry can be used for biometric verification and identification because of its acquisition convenience and good performance for verification and identification performance. It could also be a good candidate for online checks. Therefore, this paper proposes a Hand-Geometry recognition system based on geometrical features of hand. From anatomical point of view, human hand can be characterized by its length, width, thickness, geometrical composition, shapes of the palm, and shape and geometry of the fingers. This paper proposes thirty relevant features for a Hand-Geometry recognition system. This system presents verification results based on hand measurements of 20 individuals. The verification process has been tested on a size of $320{\times}240$ image, and result of the verification process have hit rate of 95% and FAR of 0.020.

A Study on Numeral Speech Recognition Using Integration of Speech and Visual Parameters under Noisy Environments (잡음환경에서 음성-영상 정보의 통합 처리를 사용한 숫자음 인식에 관한 연구)

  • Lee, Sang-Won;Park, In-Jung
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.38 no.3
    • /
    • pp.61-67
    • /
    • 2001
  • In this paper, a method that apply LP algorithm to image for speech recognition is suggested, using both speech and image information for recogniton of korean numeral speech. The input speech signal is pre-emphasized with parameter value 0.95, analyzed for B th LP coefficients using Hamming window, autocorrelation and Levinson-Durbin algorithm. Also, a gray image signal is analyzed for 2-dimensional LP coefficients using autocorrelation and Levinson-Durbin algorithm like speech. These parameters are used for input parameters of neural network using back-propagation algorithm. The recognition experiment was carried out at each noise level, three numeral speechs, '3','5', and '9' were enhanced. Thus, in case of recognizing speech with 2-dimensional LP parameters, it results in a high recognition rate, a low parameter size, and a simple algorithm with no additional feature extraction algorithm.

  • PDF

Noisy Speech Recognition using Probabilistic Spectral Subtraction (확률적 스펙트럼 차감법을 이용한 잡은 환경에서의 음성인식)

  • Chi, Sang-Mun;Oh, Yung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.94-99
    • /
    • 1997
  • This paper describes a technique of probabilistic spectral subtraction which uses the knowledge of both noise and speech so as to reduce automatic speech recognition errors in noisy environments. Spectral subtraction method estimates a noise prototype in non-speech intervals and the spectrum of clean speech is obtained from the spectrum of noisy speech by subtracting this noise prototype. Thus noise can not be suppressed effectively using a single noise prototype in case the characteristics of the noise prototype are different from those of the noise contained in input noisy speech. To modify such a drawback, multiple noise prototypes are used in probabilistic subtraction method. In this paper, the probabilistic characteristics of noise and the knowledge of speech which is embedded in hidden Markov models trained in clean environments are used to suppress noise. Futhermore, dynamic feature parameters are considered as well as static feature parameters for effective noise suppression. The proposed method reduced error rates in the recognition of 50 Korean words. The recognition rate was 86.25% with the probabilistic subtraction, 72.75% without any noise suppression method and 80.25% with spectral subtraction at SNR(Signal-to-Noise Ratio) 10 dB.

  • PDF

Facial Image Recognition Based on Wavelet Transform and Neural Networks (웨이브렛 변환과 신경망 기반 얼굴 인식)

  • 임춘환;이상훈;편석범
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.3
    • /
    • pp.104-113
    • /
    • 2000
  • In this study, we propose facial image recognition based on wavelet transform and neural network. This algorithm is proposed by following processes. First, two gray level images is captured in constant illumination and, after removing input image noise using a gaussian filter, differential image is obtained between background and face input image, and this image has a process of erosion and dilation. Second, a mask is made from dilation image and background and facial image is divided by projecting the mask into face input image Then, characteristic area of square shape that consists of eyes, a nose, a mouth, eyebrows and cheeks is detected by searching the edge of divided face image. Finally, after characteristic vectors are extracted from performing discrete wavelet transform(DWT) of this characteristic area and is normalized, normalized vectors become neural network input vectors. And recognition processing is performed based on neural network learning. Simulation results show recognition rate of 100 % about learned image and 92% about unlearned image.

  • PDF

A Robust Method for the Recognition of Dynamic Hand Gestures based on DSTW (다양한 환경에 강건한 DSTW 기반의 동적 손동작 인식)

  • Ji, Jae-Young;Jang, Kyung-Hyun;Lee, Jeong-Ho;Moon, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.1
    • /
    • pp.92-103
    • /
    • 2010
  • In this paper, a method for the recognition of dynamic hand gestures in various backgrounds using Dynamic Space Time Warping(DSTW) algorithm is proposed. The existing method using DSTW algorithm compares multiple candidate hand regions detected from every frame of the query sequence with the model sequences in terms of the time. However the existing method can not exactly recognize the models because a false path can be generated from the candidates including not-hand regions such as background, elbow, and so on. In order to solve this problem, in this paper, we use the invariant moments extracted from the candidate regions of hand and compare the similarity of invariant moments among candidate regions. The similarity is utilized as a weight and the corresponding value is applied to the matching cost between the model sequence and the query sequence. Experimental results have shown that the proposed method can recognize the dynamic hand gestures in the various backgrounds. Moreover, the recognition rate has been improved by 13%, compared with the existing method.

A Study on the Improvement of Intaglio Characters Recognition of Rubber Tires (고무타이어의 음각 문자 인식 향상에 관한 연구)

  • Yun, Hyeong-Jin;Park, Koo-Rack;Kim, Dong-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.10
    • /
    • pp.7-12
    • /
    • 2018
  • In today's rapidly growing contemporary society, there is a tendency for demand to automate production processes by utilizing the vision system. In general, image recognition is mainly concerned with embossed characters such as license plates, and research on recognition of intaglio characters is very limited. Especially, intaglio characters, which are marked on rubber related products such as tire surfaces, have difficulty in recognizing characters or numbers through image because the difference in brightness with surrounding is not so large. In this paper, we propose a system to improve the recognition rate of characters marked on intaglio rubber products such as tire surfaces. Also, it can be applied flexibly according to the lighting environment. Through the proposed system, production and inventory management and defect detection can be processed quickly by applying to the production process of tire and rubber products.

Word Recognition using Fuzzy Inference based on LPC (선형예측계수에 기초한 퍼지추론 단어 인식)

  • Choi, Seung-Ho;Kim, Hyeong-Geun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.32-41
    • /
    • 1994
  • To solve the frequency variation of speech patterns which consist of LPC sequences, new membership function view from LPC, spectrum and the relations between the order of LPC and spectrum is proposed. To solve the time variation, multi-secation equi-segmentation method which equally divide the speech section into several section are applied. False recognition mainly occur at time when the same syllable is placed at the same utterance. To reduce the error, fuzzy inference is executed using the proposed membership function and weights are assigned into sectional certainty and then the decision method for recognized the section up to the third candidate. To testify the validation of this method, we experimented the recognition test of 28 DDD area names. The recognition rate of the fuzzy inference by the triangle membership function is $92\%$. That of the combined method of the fuzzy inference and the dicision method is $92.9\%$ and that of fuzzy inference by the proposed membership funtion is $93.8\%$.

  • PDF

Implementation of a Multimodal Controller Combining Speech and Lip Information (음성과 영상정보를 결합한 멀티모달 제어기의 구현)

  • Kim, Cheol;Choi, Seung-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.40-45
    • /
    • 2001
  • In this paper, we implemented a multimodal system combining speech and lip information, and evaluated its performance. We designed speech recognizer using speech information and lip recognizer using image information. Both recognizers were based on HMM recognition engine. As a combining method we adopted the late integration method in which weighting ratio for speech and lip is 8:2. By the way, Our constructed multi-modal recognition system was ported on DARC system. That is, our system was used to control Comdio of DARC. The interrace between DARC and our system was done with TCP/IP socked. The experimental results of controlling Comdio showed that lip recognition can be used for an auxiliary means of speech recognizer by improving the rate of the recognition. Also, we expect that multi-model system will be successfully applied to o traffic information system and CNS (Car Navigation System).

  • PDF

Implementation of a Robust Visual Surveillance System for the Variation of Illumination Lights (조명광 변화에 강인한 영상 감시시스템 구현)

  • Jung, Yong-Bae;Kim, Jung-Hyeon;Kim, Tae-Hyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.517-525
    • /
    • 2006
  • In this paper, the algorithm which improve the efficiency of surveillance in spite of the change of light is proposed and confirmed by virtue of the experiments. One of the problems for the implementation of visual surveillance system is the image processing technique to overcome with the variations of illumination lights. Some conventional systems are generally not considered the error due to the change of lights because the system use at indoor. In practical, the factors of bad image can be classified to the ghosts due to the reflection of lights and shadows in a scene. Especially weak images and noises at night are decreased the performance of visual surveillance system. In the paper, the filter which improve the images with some change of illumination lights is designed and the gabor filter is used for recognition and tracking of the moving objects. In the results, the system showed that the recognition and tracking were obtained $92\sim100%$ of recognition rate at daytime, but $80\sim90%$ of nighttime.

Improved Object Recognition using Wavelet Transform & Histogram Equalization in the variable illumination (다양한 조명하에서 웨이블렛 변환과 히스토그램 평활화를 이용한 개선된 물체인식)

  • Kim Jae-Nam;Jung Byeong-Soo;Kim Byung-Ki
    • The KIPS Transactions:PartD
    • /
    • v.13D no.2 s.105
    • /
    • pp.287-292
    • /
    • 2006
  • There are two problems associated with the existing principal component analysis, which is regarded as the most effective in object recognition technology. First, it brings about an increase in the volume of calculations in proportion to the square of image size. Second, it gives rise to a decrease in accuracy according to illumination changes. In order to solve these problems, this paper proposes wavelet transformation and histogram equalization. Wavelet transformation solves the first problem by using the images of low resolution. To solve the second problem the histogram equalization enlarges the contrast of images and widens the distribution of brightness values. The proposed technology improves recognition rate by minimizing the effect of illumination change. It also speeds up the processing and reduces its area by wavelet transformation.