• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.03 seconds

A Study on Performance Improvement of Business Card Recognition in Mobile Environments (모바일 환경에서의 명함인식 성능 향상에 관한 연구)

  • Shin, Hyunsub;Kim, Chajong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.318-328
    • /
    • 2014
  • In this paper, as a way of performance improvement of business card recognition in the mobile environment, we suggested a hybrid OCR agent which combines data using a parallel processing sequence between various algorithms and different kinds of business card recognition engines which have learning data. We also suggested an Image Processing Method on mobile cameras which adapts to the changes of the lighting, exposing axis and the backgrounds of the cards which occur depending on the photographic conditions. In case a hybrid OCR agent is composed by the method suggested above, the average recognition rate of Korean business cards has improved from 90.69% to 95.5% compared to the cases where a single engine is used. By using the Image Processing Method, the image capacity has decreased to the average of 50%, and the recognition has improved from 83% to 92.48% showing 9.4% improvement.

A embodiment of mouse pointing system using 3-axis accelerometer and sound-recognition module (3축 가속도센서 및 음성인식 모듈을 이용한 마우스 포인팅 시스템의 구현)

  • Lee, Seung-Joon;Shin, Dong-Hwan;Kasno, Mohamad Afif B.;Kim, Joo-Woong;Park, Jin-Woo;Eom, Ki-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.934-937
    • /
    • 2010
  • In this paper, we did pursue the embodiment of a mouse pointing system which help the handicapped and people of not familiar with using electronics use electronic devices easily. Speech Recognition and 3-axis acceleration sensors in conjunction with a headset, a new mouse pointing system is constructed. We used speaker dependent system module which are generating the BCD code by recognizing human voices because it has high recognition rate rather than speaker independent system. Head-set mouse system is organized by 3-axis accelerometer, sound recognition module and TMS320F2812 processor. The main controller, TMS320F2812 DSP-processor is communicated with main computer by using SCI communications. The system is operated by Visual Basic in PC.

  • PDF

Hand shape recognition based on geometric feature using the convex-hull (Convex-hull을 이용한 기하학적 특징 기반의 손 모양 인식 기법)

  • Choi, In-Kyu;Yoo, Jisang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.1931-1940
    • /
    • 2014
  • In this paper, we propose a new hand shape recognition algorithm based on the geometric features using the convex-hull from the depth image acquired by Kinect system. Kinect is a camera providing a depth image and user's skeleton information and used for detecting hand region. In the proposed algorithm, hand region is detected in a depth image acquired by Kinect and convex-hull of the region is found. Boundary points caused by noise and unnecessary points for recognition are eliminated in the convex-hull that changes depending on hand shape. Hand shape is recognized by the sum of internal angle of a polygon that is matched with convex-hull reconstructed with selected boundary points. Through experiments, we confirm that proposed algorithm shows high recognition rate not only for five models but also those cases rotated.

Illumination-Robust Load Lane Color Recognition based on S-color Space (조명변화에 강인한 S-색상공간 기반의 차선색상 판별 방법)

  • Baek, Seung-Hae;Jin, Yan;Lee, Geun-Mo;Park, Soon-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.434-442
    • /
    • 2018
  • In this paper, we propose a road lane color recognition method from the image obtained from a driving vehicle. In autonomous vehicle techniques, lane information becomes more important as the level of autonomous driving such as lane departure warning and dynamic lane keeping assistance is increased. In particular the lane color recognition, especially the white and the yellow lanes, is necessary technique because it is directly related to traffic accidents. In this paper, color information of lane and road area is mapped to a 2-dimensional S-color space based on lane detection. And the center of the feature distribution is obtained by using an improved mean-shift algorithm in the S-color space. The lane color is determined by using the distance between the center coordinates of the color features of the left and right lanes and the road area. In various illumination conditions, about 97% color recognition rate is achieved.

Phoneme Segmentation based on Volatility and Bulk Indicators in Korean Speech Recognition (한국어 음성 인식에서 변동성과 벌크 지표에 기반한 음소 경계 검출)

  • Lee, Jae Won
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.10
    • /
    • pp.631-638
    • /
    • 2015
  • Today, the demand for speech recognition systems in mobile environments is increasing rapidly. This paper proposes a novel method for Korean phoneme segmentation that is applicable to a phoneme based Korean speech recognition system. First, the input signal constitutes blocks of the same size. The proposed method is based on a volatility indicator calculated for each block of the input speech signal, and the bulk indicators calculated for each bulk in blocks, where a bulk is a set of adjacent samples that have the same sign as that of the primitive indicators for phoneme segmentation. The input signal vowels, voiced consonants, and voiceless consonants are sequentially recognized and the boundaries among phonemes are found using three devoted recognition algorithms that combine the two types of primitive indicators. The experimental results show that the proposed method can markedly reduce the error rate of the existing phoneme segmentation method.

Design of Improved UI of Automatic Parking Management System using License Plate Recognition (번호판 인식을 통한 자동 주차관리 시스템의 개선된 UI 설계)

  • Kim, Bong-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1083-1088
    • /
    • 2014
  • Recently, due to advances in both imaging technology and ICT, various types of image processing services became available and the application services of these two technologies are diversifying. Recognition of vehicle license plates is used in places where vehicle information is needed such as in parking management. However, existing systems have economic disadvantages like issuing parking tickets and attaching unnecessary equipment. In order to solve these problems, we designed and implemented automatic parking management system through recognition of vehicle license plates by using emguCV that is based on OpenCV. Additionally, we designed improved UI to handle the entire parking management situation which include information such as details of each parking vehicle, parking time and remaining parking spaces without screen movement. This improved UI is implemented with the use of WPF which is the latest technology in user program development. The emguCV used in this paper showed the most optimized performance in Intel based environment. With it, we obtained the result of within 0.5 seconds of recognition processing time and over 90% of recognition rate. Through improved UI, the manager could both simply and intuitively manage the entire system.

A Matrix-Based Graph Matching Algorithm with Application to a Musical Symbol Recognition (행렬기반의 정합 알고리듬에 의한 음악 기호의 인식)

  • Heo, Gyeong-Yong;Jang, Kyung-Sik;Jang, Moon-Ik;Kim, Jai-Hie
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.8
    • /
    • pp.2061-2074
    • /
    • 1998
  • In pattern recognition and image analysis upplications, a graph is a useful tool for complex obect representation and recognition. However it takes much time to pair proper nodes between the prototype graph and an input data graph. Futhermore it is difficult to decide whether the two graphs in a class are the same hecause real images are degradd in general by noise and other distortions. In this paper we propose a matching algorithm using a matrix. The matrix is suiable for simple and easily understood representation and enables the ordering and matching process to be convenient due to its predefined matrix manipulation. The nodes which constitute a gaph are ordered in the matrix by their geometrical positions and this makes it possible to save much comparison time for finding proper node pairs. for the classification, we defined a distance measure thatreflects the symbo's structural aspect that is the sum of the mode distance and the relation distance; the fornet is from the parameters describing the node shapes, the latter from the relations with othes node in the matrix. We also introduced a subdivision operation to compensate node merging which is mainly due t the prepreocessing error. The proposed method is applied to the recognition of musteal symbols and the result is given. The result shows that almost all, except heavily degraded symbols are recognized, and the recognition rate is approximately 95 percent.

  • PDF

Implementation of Fatigue Identification System using C4.5 Algorithm (C4.5 알고리즘을 이용한 피로도 식별 시스템 구현)

  • Jin, You Zhen;Lee, Deok-Jin
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.8
    • /
    • pp.21-26
    • /
    • 2019
  • This paper proposes a fatigue recognition method using the C4.5 algorithm. Based on domestic and international studies on fatigue evaluation, we have completed the fatigue self - assessment scale in combination with lifestyle and cultural characteristics of Chinese people. The scales used in the text were applied to 58 sub items and were used to assess the type and extent of fatigue. These items fall into four categories that measure physical fatigue, mental fatigue, personal habits, and fatigue outcomes. The purpose of this study is to analyze the leading causes of fatigue formation and to recognize the degree of fatigue, thereby increasing the personal interest in fatigue and reducing the risk of cerebrovascular disease due to excessive fatigue. The recognition rate of the fatigue recognition system using the C4.5 algorithm was 85% on average, confirming the usefulness of this proposal.

Recognition Direction Improvement of Target Object for Machine Vision based Automatic Inspection (머신비전 자동검사를 위한 대상객체의 인식방향성 개선)

  • Hong, Seung-Beom;Hong, Seung-Woo;Lee, Kyou-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.11
    • /
    • pp.1384-1390
    • /
    • 2019
  • This paper proposes a technological solution for improving the recognition direction of target objects for automatic vision inspection by machine vision. This paper proposes a technological solution for improving the recognition direction of target objects for automatic vision inspection by machine vision. This enables the automatic machine vision inspection to detect the image of the inspection object regardless of the position and orientation of the object, eliminating the need for a separate inspection jig and improving the automation level of the inspection process. This study develops the technology and method that can be applied to the wire harness manufacturing process as the inspection object and present the result of real system. The results of the system implementation was evaluated by the accredited institution. This includes successful measurement in the accuracy, detection recognition, reproducibility and positioning success rate, and achievement the goal in ten kinds of color discrimination ability, inspection time within one second and four automatic mode setting, etc.

Exploration of deep learning facial motions recognition technology in college students' mental health (딥러닝의 얼굴 정서 식별 기술 활용-대학생의 심리 건강을 중심으로)

  • Li, Bo;Cho, Kyung-Duk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.333-340
    • /
    • 2022
  • The COVID-19 has made everyone anxious and people need to keep their distance. It is necessary to conduct collective assessment and screening of college students' mental health in the opening season of every year. This study uses and trains a multi-layer perceptron neural network model for deep learning to identify facial emotions. After the training, real pictures and videos were input for face detection. After detecting the positions of faces in the samples, emotions were classified, and the predicted emotional results of the samples were sent back and displayed on the pictures. The results show that the accuracy is 93.2% in the test set and 95.57% in practice. The recognition rate of Anger is 95%, Disgust is 97%, Happiness is 96%, Fear is 96%, Sadness is 97%, Surprise is 95%, Neutral is 93%, such efficient emotion recognition can provide objective data support for capturing negative. Deep learning emotion recognition system can cooperate with traditional psychological activities to provide more dimensions of psychological indicators for health.